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Abstract

Firms often have imperfect information about demand for their products. We develop an inte-
grated econometric and theoretical framework to model firm demand assessment and subsequent
pricing decisions with limited information. We introduce a panel data discrete choice model
whose realistic assumptions about consumer behavior deliver partially identified preferences and
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1 Introduction

Standard approaches for applying random utility models to interpret discrete choice data maintain

assumptions that allow point identification of consumer preferences. A major justification for making

these assumptions is that point identifying preferences eases counterfactual choice predictions, which

is often the original reason for modeling consumer behavior. However, as others have noted, this

“ends justifies the means” argument tends to ignore the cost of making such assumptions: they

reduce the credibility of the counterfactual predictions.1 With the aim of increasing credibility, the

first part of this paper develops a model that requires only conservative assumptions about consumer

decision-making processes to partially identify preferences and, consequently, counterfactual choices.

We focus on settings with panel data, and extend prior work by integrating conservative assumptions

on inter-temporal decision-making into our econometric framework.

The second part of the paper focuses on how firms use the model’s output to make strategic

decisions. While our robust modeling assumptions still allow us to predict counterfactual choices,

the analysis of a firm’s strategic optimization problem is complicated by the fact that that those

counterfactual demand curves are only partially identified. With this information set, how does a

firm make a strategic choice like a pricing decision? When output is point identified, a firm has

complete information about the distribution of consumer preferences, and can use this information

to maximize expected profits. In our setting, and indeed in any setting where a firm uses partially

identified parameters as decision-making inputs, the firm may not be able to construct a prior over the

set of feasible preference parameters in order to maximize expected profits. In this sense the firm faces

“Knightian Uncertainty”, or ambiguity, about consumer demand. The second primary contribution

of this paper analyzes how a firm can use the partially identified set of preference distributions arising

from our conservative econometric model to choose prices under ambiguity.

This paper thus integrates the prior theoretical work on firm pricing under ambiguity with a

novel econometric framework to (i) econometrically model the lack of information inherent in the

firm’s problem when only conservative assumptions about consumer decision-making are made and

then to (ii) study how firms will price under ambiguity if their information set is consistent with the

output of our econometric model. We then use this two part framework to study firm pricing in both

simulations and field data. We show that there are many cases where, despite its more conservative

approach, our integrated model compares favorably to, and at times outperforms, the combined mixed

logit and expected profit maximization framework, which is the “workhorse” model of the industrial

organization literature.

We investigate an environment with panel data and develop four alternative models that cor-

respond to different assumptions on how consumer preferences can change over time. Each model

results in a distinct, partially identified set of consumer preferences and, consequently, demand curves

and counterfactual choices. Across these models, the primary parametric assumption we maintain

is that consumer preferences are a linear function of product attributes, as in the canonical dis-

1Indeed, Manski (2003) refers to this as the “Law of Decreasing Credibility”.
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crete choice framework of McFadden (1974). Under this assumption, each alternative inter-temporal

decision-making framework places restrictions on the range of feasible valuations for products and

their associated attributes, given consumers’ choices. Unlike models with more powerful statistical

assumptions about the distribution of preferences (e.g. random coefficients) and the distribution

of idiosyncratic preference shocks (e.g independent and identically distributed logit errors), each of

our models can be rejected by the data if the underlying assumptions are violated, increasing the

credibility of the analysis at the expense of reduced precision.

The four frameworks differ according to their maintained assumptions on the time variation of

consumers’ preferences.2 In the first, most basic, setup, consumers have the same exact preferences

in each time period, with no idiosyncratic component, and we directly apply the strong axiom of

revealed preferences to partially identify consumer preferences. This most basic model lacks flexibility

in allowing for within-consumer variation in preferences over time, and hence will likely be rejected

by the data. Thus we extend it in three ways to allow for time varying consumer utility. First, we

study random shocks to each consumer’s utility for each product and time period. Unlike previous

models in this literature, which place more structure on the distribution of these random shocks, we

only maintain that these errors are bounded in size by a constant in absolute value and we do not

make any independence or distributional assumptions about these error terms.3 Including bounded

errors allows the model to account for small departures from stable preferences that occur often

over the course of multiple decisions. We illustrate how the bound (i) is identified and (ii) can be

estimated in a first stage using only the original panel data set.4 Our next framework studies data

contamination, an oft-cited determinant of observed time-variation in purchases (see e.g. Keane

(1997) or Einav, Leibtag, and Nevo (2010)). Intuitively, this allows the model to account for large

departures from stable preferences that occur rarely. It will often be the case that for particular

datasets there is existing knowledge that can be drawn upon to inform the econometrician about the

extent of contamination in the data. Our final framework combines our analysis of bounded errors

with our analysis of data contamination.

With these partially identified predictions in hand, we then investigate the firm pricing problem

under ambiguity. To our knowledge, this is the first work that integrates an econometric framework

that generates partially identified demand, due to a firm’s lack of information on consumer preferences,

with a model of firm pricing under ambiguity. We model firm decision-making using the minimax-

regret pricing criteria discussed elsewhere in a purely theoretical setting (see e.g. Bergemann and

Morris (2005) Bergemann and Schlag (2007) or Bergemann and Schlag (2008)). Under this criterion,

the firm chooses a price to minimize its maximum regret over the set of perceived feasible demand

2As an additional extension to each of these four frameworks, we develop a method to use cross-sectional variation
in conjunction with each of these inter-temporal frameworks to obtain further identifying power when the panel is not
a representative sample from the population.

3These assumptions address many of the undesirable features of the standard extreme value random utility model,
as discussed in Bajari and Benkard (2003).

4We characterize the identified sets in the cases (i) where the error bound is known by the firm and econometrician
and (ii) where the error bound is unknown by both parties and is estimated.
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curves represented by the partially identified output of our econometric model. Here regret is defined

for a given demand curve in the set of feasible demand curves, and equals the difference between

profits under the optimal price for that demand curve and the profits under the actual price.5 Our

analysis considers the cases of monopolistic and duopolistic pricing under ambiguity based on the

partially identified set of demand curves where the latter incorporates a strategic environment.6

While we use minimax-regret as a criterion because it has the desirable property that it trades off

potential losses from overpricing (selling too little) versus those from underpricing (not extracting

enough consumer value), we note that any criterion for decision-making under ambiguity could be

used to make decisions with our partially identified econometric output. For example, the maxmin

criterion (see e.g. Gilboa and Schmeidler (1989)) is a potential alternative to minimax-regret, which

we study briefly in the context of our empirical examples.

We use simulations to test the performance of our joint econometric-theoretical framework relative

to two benchmark specifications: (i) the mixed logit with multivariate mixing and (ii) ex post optimal

pricing under perfect information. For plausible underlying data generating processes, we analyze how

consumer choices translate into partially identified estimates of demand for our different econometric

models. The results show that, in the monopoly setting, the monopolist gets close to ex post efficient

prices with our framework independent of the underlying error data generating process. On the other

hand, the mixed logit performs well if the underlying data structure has i.i.d. errors but can yield large

differences from optimal pricing when this is violated (such as when there are time correlated error

shocks). In the oligopolistic setting, we analyze minimax-regret best response curves given partially

identified preferences and show that prices under our model are much closer to the ex post efficient

prices for many data generating processes. These results suggest that our integrated framework for

robust firm pricing provides a viable alternative to the canonical mixed logit model in cases where it

is likely that the firms studied have limited information.

Finally, we illustrate how our methodology can be applied in an actual empirical setting in order

to recommend an optimal price when only conservative assumptions about consumer decision-making

are made. The setting we consider is retailer milk pricing. Fluid milk is a frequently purchased non-

storable durable good and is an important category for retailers as it has the highest penetration of

any retail category (Bronnenberg, Kruger, and Mela (2008)). It is mainly driven by retailer owned,

private label brands and, importantly for us, it is a non-storable good.7,8 By first estimating demand

and then solving for minimax-regret optimal prices, we show that our methodology is applicable in

5Note that this notion of regret from the statistical decision literature (e.g. Savage (1951)) is completely distinct
from the notion of regret discussed in the psychology and economics literature.

6We developed our framework for strategic firm pricing under ambiguity simultaneously and independently of recent
work by Renou and Schlag (2010) who study foundations for minimax-regret strategic pricing equilibrium in a purely
theoretical paper.

7See Fong, Simester, and Anderson (2011) for a review of marketing papers estimating private label elasticity with
standard models.

8This second observation is relevant as this rules out stockpiling behavior which will generate dynamic choice
behavior, the modeling of which lies outside the scope of this paper (for papers that do model this behavior based on
more “traditional” demand estimation techniques, see Erdem, Imai, and Keane (2003) or Hendel and Nevo (2006)).
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real-world settings and returns sensible counterfactual recommendations (the minimax-regret optimal

price is $2.40/gallon when actual observed prices average about $2.56/gallon).

This paper helps to advance the twin goals in the broader discrete choice literature of (i) describing

preferences and (ii) making counterfactual predictions. Papers that best describe preferences in

specific contexts can make conservative assumptions with simple decision-theoretic foundations, but,

as a result, are generally not well suited for counterfactual prediction. For example, Samuelson

(1938) and Samuelson (1948) study observed consumers’ choices from different choice sets and price-

income pairs and use either the weak or strong axiom of revealed preference along with a transitivity

assumption to draw powerful conclusions about preferences for products in the observed environment.

Following this line of work, Varian (1982) and Varian (1983) develop an econometric methodology that

(i) tests if observed choice behavior is consistent with rational choices and (ii) recovers preferences

as a function of prices and budget sets. While these approaches infer preferences under minimal

assumptions, their empirical viability is limited because they require very rich choice data, the models

can be easily rejected by the data, and they cannot inform predictions in counterfactual settings.

In more recent work, Blundell, Browning, and Crawford (2008) use revealed preference restrictions

to non-parametrically identify demand responses along Engel curves.9 Similar to this paper, their

objective is to use theoretical restrictions to obtain credible preference estimates, given individual-

level data on relative prices and total expenditures, without imposing the usual parametric and

statistical assumptions that permeate the demand estimation literature. Our approaches differ along

multiple dimensions, most prominently that Blundell et al. (i) take a cross-sectional approach that

does not incorporate time series decision restrictions in identification and (ii) do not incorporate the

notion of products as bundles of attributes (or maintain the linear utility in attributes assumption

that we do). The former implies that our primary sources of identification and ideal data sets differ

substantially, as we incorporate theoretical restrictions on how a given consumer makes decisions

over time. While Blundell et al. study what minimum level of statistical perturbation to their

consumer utility bounds can justify a rational paradigm given their model and choice environment,

our analysis partially identifies sets of preferences for attributes and can be used to make predictions

in counterfactual choice settings where products are composed of those same attributes (e.g. with new

products or new choice settings based on existing products). Finally, we incorporate the possibility

of data contamination and link the output of the econometric exercise directly to the firm pricing

decision under ambiguity.

The second, and much more heavily utilized, branch of the discrete choice literature makes stronger

assumptions about consumer behavior but is also able to make stronger statements about counterfac-

tual outcomes. These papers assume that consumers have preferences for product attributes which

are aggregated to establish preferences over products (see Lancaster (1966) and McFadden (1974)).

The canonical model assumes that consumer preferences have a specific parametric form that maps

attribute-specific preference parameters, vectors of product attributes, and an additive preference

9In related work Blundell, Browning, and Crawford (2003) show how to use non-parametric methods to detect
revealed preference violations.
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shock known to the firm (but not the researcher) into product values and preference orderings. Pa-

pers in this literature make different assumptions about the distributions of deterministic preference

heterogeneity and the idiosyncratic preference shock, but all generally assume that the error terms

are either independent and/or identically distributed across consumers, products and time.10 Given

the distribution of error shocks and form of utility, model parameters are identified using observed

choice data.11 Our work uses some of the basic assumptions in this literature, such as attribute

based preferences, to maintain the ability to perform flexible counterfactual analyses, but refrains

from making parametric assumptions which are without theoretical foundation and can be difficult

to interpret.12

Of special note is recent work by Manski (2007), who studies a semi-parametric cross-sectional

discrete choice model with no assumptions on the distribution of errors. Manski partially identi-

fies preferences based on three main sources: (i) linear utility in attributes, (ii) the consistency of

preference parameters with observed rational behavior for a given choice set and (iii) cross-sectional

variation in prices and choice sets. Our paper uses (i) but has different notions of (ii) and (iii), pri-

marily because we study a panel setting where choice consistency over time must be taken into. We

view his paper as complementary to our own from an econometric perspective since it has a similar

underlying motivation but applies to a distinctly different data environment. Moreover, his paper

does not investigate how the output of the model will be used in decision-making as we do with our

emphasis on firm pricing.

The remainder of the paper proceeds as follows. Section 2 sets up the model and derives the

identification regions for each framework. Section 3 discusses estimation. Section 4 describes the

firm problem when preferences are partially identified. Section 5 illustrates the methodology through

simulations and in an application to milk pricing. Section 6 concludes.

10Several papers provide counterexamples to this claim and deserve specific mention. An important contribution in
this line of work is Keane (1997) who establishes the presence of state dependent preferences as well as heterogeneity in
these tastes. Recently, Fiebig, Keane, Louviere, and Wasi (2010) extend the mixed multinomial logit model to present
a generalized multinomial logit model that allows better modeling of consumers with extreme and/or random tastes (in
the sense that a particular attribute of a product drives much of their decision-making). In other related work, Geweke
(Forthcoming) explores recovering regions of parameters based on observed data but from a Bayesian perspective.

11Broadly speaking, these models fall into four categories (Ben-Avika, McFadden, Abe, Bockenholt, Bolduc,
Gopinath, Morikawa, Ramaswamy, Rao, Revelt, and Steinberg (1997)): those assuming (1) functional forms for deter-
ministic utility (linear in product attributes) and that error terms are i.i.d. according to a specified distribution, such
as Type 1 Extreme Value (this could include dynamic structural models of demand, e.g. Erdem and Keane (1996),
Erdem, Imai, and Keane (2003) or Hendel and Nevo (2006)); (2) a parametric functional form for deterministic utility
(usually linear in attributes) but with unspecified error distribution (see Manski (1975)); (3) a specific form for the
error distribution, but no functional form assumption on deterministic utility (see Haistie and Tibshirani (1990) and
Abe (1995)); and (4) no functional form for deterministic utility or the distribution of error terms (see Matzkin (1993)).

12We view our work as complementary to the prior literature that maintains stronger assumptions on the distributions
of preferences and preference shocks. If the output from a model with many maintained assumptions does not lie within
the bounds our models produce, the researcher should be skeptical that their model is correctly specified. Further,
if the point identified output lies near one edge of our feasible demand curve set, our model sheds light on the likely
direction of any potential model bias. Finally, if the researcher believes there are specific justifications for the parametric
assumptions maintained, this adds insight above and beyond our model.
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2 Model

The problem we consider is one where a firm observes panel data and uses them to make a pricing

decision. Our goal is to relax the assumptions underlying the traditional literature on such behavior

by not requiring the firm to know the distribution of demand for its products. That is, we consider a

firm which seeks to to maximize profits, but cannot necessarily do so in the traditional way because

it does not know the distribution of types in the population. This implies that the firm can only

partially identify demand for each potential price it considers. In this section we show how to non-

parametrically identify consumer preferences using panel data. We consider a variety of models with

increasing flexibility to illustrate how one can identify demand under specific incremental assumptions.

2.1 Base Case: Time Consistency

We begin our analysis with the base model that assumes that each individual has stable preferences

over time. There are no product or time specific preference shocks, which yields tight bounds, but a

high probability that the model will be rejected when consumers’ decisions can not be rationalized

within the linear preferences over attributes specification.

2.1.1 Model 1: Time Consistent Preferences

As in Manski (2007) we examine the discrete choice problem faced by consumers within a treat-

ment response framework. In this setup, there are A possible distinct alternatives (products) each

uniquely characterized by a K dimensional attribute vector x. Each attribute is assumed to have

finite support13, therefore the set A is finite. We define the set of possible treatments D as the space

of possible choice sets an individual could face, which in this setting is the collection of all non-empty

finite subsets of A. Each individual faces a choice set from D and responds by choosing an element of

that set. Formally, there is a population of N individuals, denoted I, in which each individual i ∈ I
has a response function yi(·) : D → A mapping choice sets into unique choices from that set. The

probability distribution P [y(·)] of the random function y(·) : D → A describes the aggregate choices

(product shares) made by the population.

For example, consider a case where there are three feasible alternatives b, c, and d, so that

A = {b, c, d}. Assume that the alternatives are described only by their identified name (b, c or d). In

our notation we would say that K = 3, as each alternative is described by three indicators (similar

to fixed effects). Suppose that we observe data from a choice setting where N consumers choose

between product b and c, so that D = {b, c}. In our notation we would say that yi({b, c}) = b

for the Nb consumers who choose b, yi({b, c}) = c for the Nc consumers who choose c and that

P [y({b, c}) = b] = Nb
N

, P [y({b, c}) = c] = Nc
N

.

Our objective is to estimate counterfactual choice probabilities. For example, what percentage

of consumers would choose d in a choice between all three alternatives? Without any assumptions

13This assumption contrasts with those in Berry and Haile (2009).
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about the underlying consumer decision-making process, we cannot say anything informative about

this counterfactual. In our setting we make several conservative assumptions on individual behavior

that will allow us to make counterfactual predictions.

Assumption 1. Utility Maximization: Consumers have well defined preferences and make deci-

sions that maximize utility subject to the available elements in their choice set.

Under this assumption, if consumer i faces choice set D we have the following information about

the consumers response function where ui,a is the utility consumer i gets from alternative a:

yi(D) = argmaxa ∈ Dui,a (1)

This assumption allows us to make inferences about counterfactual consumer choices, and we can

classify the population into types based on their preferences. A type is defined by preferences over all

elements of D. There are |D|! possible types in the population corresponding to different permutations

of the elements of D that could correspond to rational preference orderings. Inference about what

type a consumer might be can be made from observed choice data. In the simple example above,

there are 6 types of consumers:

1. b � c � d, 2. b � d � c, 3. c � b � d

4. c � d � b, 5. d � b � c, 6. d � c � b

Observing the fact that Nb consumers choose option b in a choice between {b, c} implies that

these consumers are of type 1, 2 or 5. Similarly, observing Nc consumers choose c implies that they

are of type 3, 4, or 6. In counterfactual choice settings, the proportion of consumers who choose c

from a choice set {b, c, d} is equivalent to estimating the proportion of consumers of type 3 or 4. In

this example this is bounded above at Nc
N

. However, without making more assumptions about the

underlying utility structure, we cannot estimate the counterfactual choice probability for choice d

since we never observe d in the consumer choice set.

Therefore, we follow the discrete choice literature (McFadden (1974)) and consider products to

be bundles of attributes and assume that consumers’ utility functions are linear in these attributes.

Assumption 2. Linear Utility: Individual utility functions are linear in the K dimensional at-

tribute vector x, that describes the alternatives in the choice sets.

Additionally, we define individual specific K dimensional parameters ωi to describe individual i’s

preferences for each attribute. We define Ω as the feasible parameter space for these preferences, with

ωi ∈ Ω.

Under these characterizations, the utility consumer i gets from alternative a is defined as:

ui,a = ωi · xa (2)
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Relating this to the response function we now have:

yi(D) = argmaxa ∈ D ωi · xa (3)

In our formulation of this utility model, price is one attribute in xa. Thus, we consider one

product sold at P different prices as P distinct feasible alternatives in the set of all alternatives A.

Here, a demand curve involves constructing a set of counterfactual predictions based on the set of

alternatives.

Unlike our simple example where we had six types of consumers in our model with linear utility,

we now have a continuous parameter space with infinite consumer types. However, since we have

a space of finite alternatives, we can represent the continuous space Ω by a discrete distribution of

types corresponding to the different possible choice functions over A (as in Manski (2007)). These

representations are equivalent because each of the ω ∈ Ω that corresponds to the same preference

ordering over all alternatives cannot be identified from each other in the data in our model. Formally,

let Am, m = 1, . . . , |A|! represent the mth permutation of A. If xm,n is the attribute bundle of the nth

element of Am, then the discrete type space can be defined:

Θm ≡ [ω ∈ Ω : ω · xm1 > ω · xm2 > . . . > ω · xm|A|]

Let θl denote a generic element of Θl which we can use from this point forward to represent that

type without loss of generality. We have now mapped our parameter space from a continuous set Ω

to a set of discrete types {θ1, . . . , θ|A|!}.14

We partially identify the distribution of types with panel data by using this model to identify the

feasible range of preferences for each individual based on their choices and then aggregating these

to form an aggregate bound on the distribution of types. In our panel data, for each individual

i ∈ I we observe choices ait from distinct choice sets over time (e.g., choice made every week) dit for

t = 1, . . . , Ti.
15

The main advantage of these data are that we can use all Ti observations for the individual to

gain more information about a given individual and aggregate feasible types. However, the panel

framework also presents additional complications since it is possible for data on individual decisions

to be inconsistent with a constant preference parameter over time. Below we present models that allow

for the most commonly given explanations for such apparent inconsistencies: time varying preferences

and data contamination.16 We begin, however, with a base model that assumes that consumers have

14As shown in Manski (2007) the linear utility specification has some identifying power as we reduce the number of
feasible choice functions before going to the data. In the simulations that we study in Section 5.1, the dimensionality
of feasible discrete types is reduced approximately by a factor of ten when we impose the linear model, implying that
the number of points in the distribution that we are estimating is also reduced by a factor of ten

15For simplicity, we will consider models where consumers make only one discrete choice at each point in time,
though nothing about our setup precludes us from observing multiple choices at multiple points in time for a given
individual, where linking contemporaneous decisions would also add identifying power.

16Two other potential explanations for such inconsistencies are decision-making errors and non-linear utility. To
focus on the core issue of robust firm pricing, we leave the exploration of these types of models to future work.
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stable preferences over time and that there is no data contamination. It is the strictest of the models

we present since it is the least flexible in terms of how it can rationalize a sequence of observed

choices.

Definition 1. Time-Consistent Utility: An individual in the population is time-consistent if they

always make decisions according to a fixed θi.

This definition implies that a consumer’s utility in each purchase occasion is described completely

by observable (to the researcher) attributes. An individual can be time-consistent if:

Θ1
i ≡

{
θ : θ ∈ ∩Ti{θ : θ · xa∗it > θ · xa−∗it , ∀a

−∗
it ∈ dit}

}
6= ∅

where a∗it is i’s purchase decision at time t and a−∗it is an element not chosen from that set. Here,

Θ1
i denotes the set of feasible θ for individual i given the decisions we observe over time. Under the

time-consistency assumption, the partially identified probability of an individual i being of type θ is:

H[Pr(θi = θ)] = [Pr(Θ1
i = {θ}),Pr(θ ∈ Θ1)] (4)

This says that the lower bound of a specific consumer being a certain type is the probability

that the identification region for an individual includes only that type, while the upper bound is the

probability that a given type is included in an identification region. If an individual is not time-

consistent so that Θ1
i = ∅, we conclude that that individual is not in the |A|! rational types and lies

instead in the larger collection of types that is described by all permutations of possible choices across

feasible choice sets.

In our base model, we consider the sample that we analyze to be the population of interest.

This simplifies exposition of our model in that it allows us to focus on identification instead of

sampling properties at this point. The set of feasible distributions for θ in the population comes

directly from identifying the feasible types at the individual level (as described above) and then

determining all combinations of these types aggregated to the population level. Then, all such

feasible aggregations describe the partially identified set of type distributions. More formally, the set

of feasible distributions satisfies:

H[F (θ)] ≡ {F (θ)|f(θ) =
1

N

∑
i∈I

I[θ = θi],∀i ∀θi ∈ Θ1
i } (5)

To understand the set definition, consider the example from above where there are six consumer

types. Suppose that there are two consumers for whom, based on their sequence of purchases, we

have determined that the first can be type 1 or 2 and the second can be type 2, 3 or 4. Then there

are six possible distributions and H[F (θ)] includes all six possibilities:

The knowledge of the partially identified distribution of preferences allows us to study counter-

factual choice settings and, hence, counterfactual demand. At the individual-level, a given consumer

either could or could not choose product a from counterfactual choice set D. This binary possibility

10



1. f(1) = 1/2, f(2) = 1/2; 2. f(1) = 1/2, f(2) = 1/2
3. f(1) = 1/2, f(4) = 1/2; 4. f(2) = 1
5. f(2) = 1/2, f(3) = 1/2; 6. f(2) = 1/2, f(4) = 1/2

depends directly on whether the partially identified preference set for that individual contains at least

one preference profile where the individual would choose a from D. Given this, we define bounds on

demand for product a when the population faces choice set D relative to H[F (θ)], the set of feasible

preference distributions at the population level. Minimum demand for product a comes from the

feasible distribution in H[F (θ)] where the fewest consumers would purchase a (and vice-versa for the

maximum):

H[P (y(D)) = a] =

[
min

F (·)∈H[F (·)]

∑
θ

1[y(D) = a]f(θ), max
F (·)∈H[F (·)]

∑
θ

1[y(D) = a]f(θ)

]
(6)

2.2 Relaxing Time Consistency: Bounded Preference Shocks and Data

Contamination

The base model above is predicated on consumers having constant preferences over time. Given this

inflexibility, it is possible that an individual’s observed purchase decisions cannot be rationalized by

such a model. Therefore, we now present two extensions to make the model more realistic.

The first of these allows for individual-time-product specific preference shocks as most discrete

choice models do, but assumes no structure on the population distribution of the shocks except that

they are bounded. This approach is motivated by Bajari and Benkard (2003) who illustrate that

canonical discrete choice models with unbounded errors have some notable undesirable properties.

First, as the number of products in the choice set becomes large, the standard approach implies that

all consumer decisions are driven by unobserved error shocks. This implies that in settings with large

choice sets researchers cannot learn about underlying consumer preferences. Second, in any choice

setting, the standard approach implies that every product has a non-zero probability of being chosen

by a given consumer, regardless of underlying preferences. In this section, our model with bounded

errors allows researchers to learn about preferences over time even with a large number of products

and, additionally, allows for a zero probability of choosing a dominated product.

The second of these extensions allows for the possibility that the data may be contaminated

and thus observed purchases do not reflect actual choices. There are numerous reasons that data

may be contaminated including, but not limited to, recording errors, non-response, or interpola-

tion/extrapolation. Heuristically, bounded errors allow the model to explain consumers making fre-

quent, but small departures from stable preferences. Data contamination, on the other hand, permits

less frequent, though larger fluctuations in implied preferences.
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2.2.1 Model 2: Random Utility Model

Most attempts to estimate demand with panel data employ a utility model of the form:

ui,a = θi · xa + εi,a (7)

A consumer’s utility in each purchase occasion is described by observable (to the researcher) attributes

and unobserved error shocks. Here we make the following assumption on ε:

Assumption 3. Random Utility Model with Bounded Errors: An individual in the population

receives random utility shocks εi,a,t for each i, a, and t. The only assumption about these shocks are

that they are (strictly) bounded within some range [-δ,+δ].

Therefore, at each point in time, and for any product, an individual receives a shock to his utility

of magnitude no greater than δ. Further, as opposed to what is done in the literature, we make no

distributional or independence assumptions about this shock.17

Without any assumptions about the distribution of ε, all we know is that ∀a1, a2 ∈ D, −2δ ≤
εi,a1,t − εi,a2,t ≤ 2δ. Therefore the identification region for this model is given:

Θ2
i ≡ {θ : θ ∈ ∩Ti{θ : θ · xa∗it ≥ θ · xa−∗it − 2δ, ∀a−∗t ∈ dit}} (8)

As in the time-consistency case, the partially identified probability of an individual i being of type

θ and the feasible population distributions of types are given by equations (4) and (5), respectively,

with Θ2
i replacing Θ1

i .

As in the base model, knowledge of the partially identified distribution of preferences allows us to

study counterfactual choice settings. We can derive the probability that alternative a is chosen from

a choice set D as was done in equation (6).

Finally, up to now the firm is assumed to know δ. In Section 3 we discuss how in a given empirical

setting a firm may non-parametrically select an appropriate δ.

2.2.2 Model 3: Data Contamination Model

While bounded errors provide flexibility in terms of describing consumer decisions that depart by a

small magnitude from their stable preferences, in some cases there may be large fluctuations in implied

preferences for an individual as a function of observed choices. Here, we expand the base model by

allowing for a small probability that the data is contaminated. An alternative interpretation of large

deviations from apparently stable preferences that is based more on behavioral foundations, is that

consumers occasionally make sub-optimal decisions.18 We prefer the data contamination explanation

17If there are distinct consumer types in the data which are observable, then δ could vary across consumer types.
For simplicity we assume no such distinctions exist as the extension is straightforward.

18This may occur for a variety of reasons. It may be, for instance, that consumers do not have full information about
the options available and make decisions based on some individual heuristic. For example, there is evidence showing

12



and so proceed under that interpretation.19

Assumption 4. Data Contamination Model with Time-Consistent Utility: Individuals

have time-consistent utility but φ percentage of their decisions are recorded with error.

There are numerous reasons that data may be contaminated and multiple papers have explored

the extent, and issues relating to identification and estimation in the presence of data contamination

(see for example Horowitz and Manski (1995), Keane (1997), Erdem, Keane, and Sun (1999) or

Einav, Leibtag, and Nevo (2010)). The problem, from a researchers’ view point, is that we do not

know which occasions have incorrect data and this leads to the following partially identified set of

preferences:20

Θ3
i ≡ {θ : θ ∈ ∩Tφi {θ : θl · xa∗it ≥ θ · xa−∗it ∀a

−∗
t ∈ dit}, T

φ
i ⊆ Ti, |T φi | ≥ (1− φ)|Ti|} (9)

As in the time-consistency case, the partially identified probability of an individual i being of type

θ and the feasible population distributions of types are given by equations (4) and (5), respectively,

with Θ3
i replacing Θ1

i .

Counterfactually, once we determine the partially identified distribution of preferences we can

derive the probability that alternative a is chosen from a choice set D as was done in equation (6).

2.2.3 Model 4: Random Utility with Data Contamination Model

Assumption 5. Data Contamination Model with Random Utility: Individuals have random

utility with bounded errors and φ percentage of their decisions are recorded with error.

This model is a combination of models 2 and 3 discussed above. There are two parameters: δ,

the bound for the random utility shocks and φ, the bound for the frequency of data contamination.

The combination of these factors is attractive in situations where there is a large probability that

individual preferences change by small amounts over different choice settings and a small probability

that an individual appears to makes a decision that departs completely from our description of their

preferences.

To estimate consumer preferences with these assumptions, we define:

Θ4
i ≡ {θ : θ ∈ ∩Tφi {θ : θl · xa∗it ≥ θ · xa−∗it − 2δ ∀a−∗t ∈ dit}, T

φ
i ⊆ Ti, |T φi | ≥ (1− φ)|Ti|} (10)

that time-constrained consumers are more likely to purchase items from the middle of store shelves (Dreze, Hoch, and
Purk (1994)). As researchers, we do not know when individuals use such heuristics, nor which heuristics they use.

19There is an added benefit of avoiding a model of sub-optimal decision-making. If consumer decisions are actually
random some fraction of the time, a firm may wish to set an infinite price. As we study firm pricing below, it would
be difficult to rationalize this strategy with empirical evidence that prices are rarely infinite. We thank the referees for
pointing this out.

20A related process is discussed in Keane and Sauer (2009) and Keane and Sauer (2010), but in a very different
context. There the authors consider the case of misclassification of employment status when modeling female labor
supply.
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As in the time-consistency case, the partially identified probability of an individual i being of type

θ and the feasible population distributions of types are given by equations (4) and (5), respectively,

with Θ4
i replacing Θ1

i . Counterfactually, once we determine the partially identified distribution of

preferences we can derive the probability that alternative a is chosen from a choice set D as was done

in equation (6).

As an additional extension to each of these four frameworks, in Appendix A we develop a method

to use cross-sectional variation in conjunction with each of these inter-temporal frameworks to obtain

further identifying power when the panel is not a representative sample from the population.

2.2.4 Price Endogeneity and Bounded Errors

While most discrete choice models rely on exogenous variation of the independent variables, such

as price, our model makes no explicit independence assumptions and therefore does not require

exogenous variation. In general, endogeneity is a much bigger concern with aggregate purchase data

(see e.g. Berry, Levinsohn, and Pakes (1995)) than when the researcher has panel scanner data in

our setting (see e.g. Erdem, Imai, and Keane (2003)). While endogeneity is thus not likely to be a

major concern in our context, we note as a robustness point that the partially identified estimates of

consumer preference distributions would not be biased even if firms had any additional amount of

information that they were incorporating into prices.

To see this consider the utility function as in Berry, Levinsohn, and Pakes (1995) a canonical model

in industrial organization, where uijt = βiXjt+ ξjt+εijt where ξjt is a common shock that impacts all

consumers. The common assumption is that the firm observes ξjt and therefore sets a price Pjt that

includes this information. In our specifications with bounded errors, we consider ξjt to be a part of

εijt, which, in most standard discrete choice models with independent and i.i.d. errors would cause

price endogeneity as the error term would be correlated with the independent variables. However,

in our model we make no independence or identical distribution assumptions and therefore, with the

caveat that the error term must lie within the bounds, the model is still estimated consistently with

endogenous independent variables. To see this explicitly, say ξjt is a negative shock. In our model

this will imply all εijt will simultaneously receive negative shocks. However, as long as the shocks lie

within the assumed bound δ, the partially identified set will still be consistent and contain the true

demand distribution.

This feature remains true allowing for some proportion of the data to be contaminated, as we

do in our setting. As with the bounded error models, so long as the proportion of assumed data

contamination falls underneath our assumed upper bound for such decisions (we discuss how this can

be determined systematically in the next section), the set of estimated preference distributions is still

consistent and the true deterministic demand curve is contained within this set. Thus, our model will

be robust to endogeneity concerns with respect to price or other features of the environment such as

advertising or marketing.
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2.3 Simulation Experiment

In order to illustrate our methodology, we study a simulated market where the firm or firms have

information on consumer purchase behavior that they use to estimate a demand curve. The simulation

gives us the ability to study the degree to which the partially identified demand output from the

various proposed models links to underlying preferences. In our simulation we will have two products

and an outside option and in each time period consumers decide which product to purchase (if any)

given the specified price.

We simulate the preferences of 300 individuals from the population who obey the utility specifi-

cation:

Uijt = αij + βipijt

Here, αi are product fixed effects which we use to aggregate preferences for all attributes except

for price, as well as any other brand specific utility component. This is without loss of generality

for our pricing problem since we assume that firms in this market do not change product attributes

over time, except for price. Additional information about product attributes can only help refine

the model further. Consumer i chooses product k at time t given the decision set dit based on the

decision rules in the four models just described.

We set the utility of the outside option for each person and time period to 0 and normalize the

value of αi1 = 1 ∀i in order to obtain identification. Throughout the analysis there are two possible

products, so there are two free preference parameters for each individual in the population. For this

population, we draw αi2 from a uniform distribution on [0.5, 1.5] and βi independently from a uniform

distribution on the range [−3.75,−1.75]. We then simulate 208 time periods of choices (corresponding

to four years of weekly data21) of decisions for each individual. In order to do so, we assume that both

products are offered in every period and that their prices are drawn independently and uniformly

from the range [0.1, 0.7]. We define the feasible identification region for (αi2, βi) to be [0, 5] × [−5, 0]

so that the feasible identification region covers a large region of reasonable relative preferences.

We simulate data for each of the four choice models described above. For model 1 we simulate the

data as just described. For the models with random utility shocks (models 2 and 4) we set δ = 0.10.

This implies that random utility shocks here are at most 10% of the base value of the preference for

product 1. We allow there to be three types of consumers. The first 100 have i.i.d. errors. The second

100 have errors that are correlated across products. This correlation is generated in each period by

first drawing ε1t uniformly from the range [−δ, δ], resulting in ε̂1t. We then draw ε2t uniformly from

[ε̂1t− δ, δ] if ε̂1t > 0 and from [−δ, ε̂1t + δ] if ε̂1t < 0. The last 100 have errors that are correlated over

time. This correlation is generated for each product by first drawing εj1 uniformly from the range

[−δ, δ], resulting in ε̂j1. We then draw εj1 uniformly from [ε̂j1 − δ, δ] if ε̂j1 > 0 and from [−δ, ε̂j1 + δ]

if ε̂j1 < 0. We then repeat for period three (and so on) replacing ε̂j1 with ε̂j2.22 For models 3 and 4

21Most panel data sets available to researchers have 4 years of weekly purchase data. We have also experimented
with fewer periods. If we have 50 weeks our overall conclusions do not change.

22The average (over consumers) correlation in the errors across brands is 0.544 and the average correlation in the
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we set the φ parameter to 0.10. This implies that 10% of the data are contaminated. We also divide

the consumers into three types randomly: 100 make truly random decisions (up to) 10% of the time,

100 choose brand 1 independent of preferences (up to) 10% of the time and the other 90% of the

time they make utility based decisions and the last 100 choose not to buy (up to) 10% of the time.

However, these 10% are more likely (100 times) to occur after a purchase of brand 1 in time t − 1.

These rules are intended to simulate data contamination.

Given each individual’s choice data, we can partially identify her true parameters within this

feasible set. The size of the partially identified set varies based on the observed choice behavior

and the choice. Below, we give examples of partially identified sets for two consumers, based on

the four choice models presented. The first individual is an example of a consumer who purchases

both products (and the outside option) at some point in time in our generated data for all four

choice models. This allows us to refine the partially identified set of alternatives to a relatively small

region for all four models. All the estimated identification regions contain the true parameters. The

largest identification region is for model 4 since this model permits the most flexibility in individual

decision-making at the expense of making stronger inference on their stable preferences. In the second

example is that of a consumer who never purchases product 2 in the entire data sample. Given these

data we cannot achieve such tight bounds.

After we have found the partially identified set of preferences for all 300 consumers, we aggregate

these regions in the manner described for each model to obtain a partially identified set for the joint

distribution of tastes in the population. This distribution is generated in a two dimensional space

(α2, β space) and is used to estimate demand. The demand estimates are shown in two different

formats. First, we consider a demand curve for each product if it were sold in isolation (without the

other product) and then estimate demand with both products selling.

From Figure 3 we obtain several insights. We correctly capture the true demand in the bounds

for all of our models. The bounds are tightest in the model with the time-consistency assumption

and are widest in model 4. Overall, the bounds are tight and can be informative for managerial

decision-making. One way of thinking of this in terms of parametric discrete choice modeling is that

any correctly specified model that describes these data must predict demand to be within the bounds

specified.

Finally, in Figure 4 we consider demand in a setting where both products are sold. These rep-

resentations show that we do capture large parts of the demand curve with tight bounds across all

models. Once again, the smallest bounds are with model 1 and the largest bounds are with model 4.

3 Estimation

The econometric framework just described assumes that the researcher and firm know the bound

on the individual consumer-level preference shock δ as well as the extent of data contamination φ.

errors between times t and t+ k is 0.483, 0.223, 0.108, 0.045 and 0.018 for k = 1, 2, 3, 4 and 5, respectively.
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Figure 1: Sample identification sets for a consumer. The black dot represents the true preference
parameters, and the blue region represents the partially identified region.
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Figure 2: Sample identification sets for a consumer. The black dot represents the true preference
parameters, and the blue region represents the partially identified region.
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Figure 3: Partially identified demand curves if products were sold in isolation. The rows represent
the four models presented in this paper and the columns represent the demand curves for product 1
and product 2, respectively.
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Figure 4: Partially identified demand curves if both products are sold. The rows represent the four
models presented in this paper and the columns represent the demand curves for product 1 and
product 2, respectively.
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For cases where the firm and researcher know, or assume, δ and φ, there is a direct link from the

data observed to the partially identified preference sets that are our primary econometric output, as

described in Section 2. It is important to note here that our model can be rejected by the data if the

values of δ and φ imposed by the econometrician can not explain the observed variation in the data.

In some empirical settings, researchers might have limited information about these parameters.

In this section we propose a simple method to identify and estimate δ in a first stage that precedes

the implementation of the framework set out in Section 2. To do this, we first resolve the issue of

where the data contamination parameter φ comes from in an empirical setting, and then discuss the

first stage estimation of δ conditional on that value of φ.

3.1 Data Contamination

There are numerous reasons that data may be contaminated including, but not limited to, recording

errors, non-response, or interpolation/extrapolation. Numerous authors have explored the extent, and

issues relating to identification and estimation in the presence of data contamination across myriad

empirical settings (see for example Horowitz and Manski (1995), Keane (1997), Erdem, Keane, and

Sun (1999) or Einav, Leibtag, and Nevo (2010)). In our setup, we cannot separately identify both δ

and φ using just the panel data because a large δ can be used to empirically justify the large departure

from stable preferences represented by data contamination.23

In our approach, we lean on the ability to identify the extent of data contamination from past

studies or a simple empirical investigation set up by the researcher or firm. We then use the panel

data we observe to estimate δ conditional on φ.24 Previous work, such as Erdem, Keane, and Sun

(1999) or Einav, Leibtag, and Nevo (2010) provide excellent sources for researchers to learn about

the extent of data contamination. Additionally, in principle it is feasible in most empirical contexts

for the firm or researcher to perform a similar type of validation study to get φ̂.

3.2 Estimating the Error Bound

Once we have a conjecture φ̂, we can estimate δ in a first stage that uses the same panel data used

throughout the rest of the analysis. Define δ∗ as the true value of δ we are trying to recover. We

construct an estimator for δ∗ that leverages both the time-series and cross-sectional variation across

consumers in the panel data that we observe. As in Section 2, we illustrate the estimation with

homogeneous δ∗. In practice we can condition estimation of δ∗ on observable demographics without

23In our model as δ →∞, all data can be rationalized as unbounded large “random” shocks and as φ→ 1, all data
can be rationalized as completely contaminated data

24We note that, in principle, we could estimate the model by using an estimate of δ from “outside” the panel data
we observe and then estimate φ with our data conditional on that value for δ. However, since it is easy to think of how
one would construct data validation studies outside of the panel data, but difficult to think about studies that would
inform the extent of preference shocks, we believe that the approach outlined in this section is more practical for most
empirical settings.
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altering the methods described here.25

Define δφ̂iT as the lowest δ that can rationalize consumer i’s decisions when there are T time periods

observed and φ̂ is the extent of data contamination. This is the minimum value of δ that results in the

identified set for consumer i to be a non-empty set conditional on φ̂. Explicitly from the methodology

in Section 2, this implies that the δφ̂iT is the lowest value of δ, such that the set

{θ : θ ∈ ∩
T φ̂i
{θ : θl · xa∗it ≥ θ · xa−∗it − 2δ ∀a−∗t ∈ dit}, T

φ̂
i ⊆ Ti, |T φ̂i | ≥ (1− φ̂)|Ti|}

is non-empty. In addition to the assumption that δ is homogeneous conditional on observable demo-

graphics, we assume that the bound is tight for the potential purchase data we observe. That is, as

we observe infinite data, the most extreme values of δ will be realized for each consumer. Formally,

we have limT→∞ P (δφ̂iT = δ∗) = 1.

Given these assumptions, we proceed as follows. In any sample we can define ∆φ̂
T = {δφ̂iT , i ∈

I}. From this estimate we want a consistent estimator for δ∗. This is similar to the literature in

econometrics that derives estimates for boundary conditions (see the summary of current methods in

Karunamuni and Alberts (2005)), where researchers are interested in estimating the extreme points

of a distribution. There are two key differences between the common environment studied in this

literature and our setting. First, all admissible values of δ are from a discrete set (as we have

a discrete set of types) in our model, while current methods are for continuous bounded random

variables. Second, our model has the non-standard feature that the distribution of δφ̂iT should have a

point mass at δ∗ as T goes to infinity. Despite these differences, we show in Monte Carlo experiments

below that our procedure still performs well.

We follow the boundary conditions literature to build our estimator. A simple estimator of δ∗ is

δ̂ = max(∆φ̂
T ). This will be biased downwards relative to the true delta, δ∗. We correct for this bias

in estimation (though δ̂ would be consistent) because the partially identified sets will only exclude

true preferences if we estimate δ̂ < δ∗. Define this bias as γ. Now, define f̂(δφ̂iT ) as the empirical

distribution of δφ̂iT across I for fixed T . This must be a discrete distribution in our setting, without

additional restrictions on the distribution of preferences.

Our estimator for γ is:

γ̂T =
∑

δφ̂iT∈∆φ̂
T

(δ̂ − δφ̂iT )f̂(δφ̂iT ) (11)

For this estimator to be consistent, we need limT→∞ γ̂T = 0. This is true as limT→∞ f(δφ̂iT ) = 0,

∀δφ̂iT 6= δ̂∗ by our assumption of a common δ∗ for the population in question. In other words both

the simple estimator δ̂ and the bias-corrected estimator δ̂ + γ̂ are consistent for δ∗, but the latter

25It is important to point out that as T becomes large and we observe more purchase data per consumer, it becomes
more attractive to try and estimate unobserved heterogeneity in δ∗, conditional on a demographic profile. In the limit
as T → ∞ (and there is enough price variation), we identify the true δ∗ for each individual. The estimation here
recognizes that we do not observe infinite data in reality, and uses homogeneity conditional on demographics to help
identify δ∗ in the relevant group of interest.
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is more conservative in the sense that it is less likely to underestimate δ∗.26 The extent to which

γ̂T + δ̂T is upward or downward biased in a given application depends on the interaction between the

assumed form of the bias correction in equation (11) and the data. To evaluate the performance of

this estimator we run a series of Monte Carlo simulations in Appendix B. Our simulations reveal

that with more than 50 consumers and 100 time periods (reasonable values in the context of existing

panel data sets) our estimator provides a reliable and conservative estimate for the true δ∗. Under

a variety of data generating processes, the bias-corrected estimator has virtually no instances where

estimated δ̂ < δ∗ and is close δ∗ coming from above.

It is important to note that, with the assumptions maintained in this section, δ∗ for the population

(conditioning on any observable demographics) is identified by the purchases of a given consumer i

as T → ∞ and there is sufficient variation in prices. With finite data on T , a larger number of

consumers I improves the precision of δ̂ and γ̂.

4 The Firm Problem

We now demonstrate how a firm which has partially identified demand in the manner described thus

far can make strategic decisions in the face of the resulting ambiguity about consumer preferences.

We focus on perhaps the quintessential firm problem: how to set prices. We examine the cases of a

monopoly and a duopoly.

4.1 Monopoly

A monopolist observes a panel of individual decisions and makes a decision on what price to charge

to the same target population that composes the sample. Given the framework above, the monop-

olist observes a range of feasible type distributions that characterize the population and uses that

information to arrive at a pricing decision. The monopolist wishes to maximize profits, but cannot

necessarily do so in the traditional way because he does not know the distribution of types in the

population and thus can only partially identify demand for each potential price.

Given that the firm does not know the distribution of types, expected profit maximization is not

possible. Therefore, we must take a stand on how the firm makes its pricing decision. As in Bergemann

and Schlag (2007), we examine the monopolist’s problem using the minimax-regret criterion, which

does not incorporate subjective beliefs on the state space by the decision-maker. Instead, this decision-

making criterion is to minimize the largest possible “distance” from what the actual best choice would

have been, were it to know the true state of the world ex post. It is conservative in the sense that it

analyzes the maximum regret (that is, the maximum distance from the ideal value over all possible

26Estimating the choice model defined in this paper with a value of δ less than the true δ∗ could result in biased
estimates of individual types (i.e. partially identified sets that do not contain true preferences). On the other hand,
estimating the choice model with a value of δ greater than the true δ∗ will lead to a loss of efficiency (the partially
identified sets will be larger), but not a bias. This is one reason that we feel it is important to correct for the bias in δ̂
with γ̂.
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states), but less conservative than a pure maxmin criterion. This is because the minimax-regret

criterion accounts for deviations from possibly very good outcomes as well as just considering the

worst case scenario (as would the maxmin criterion). We assume that the firm solves a constrained

minimax-regret problem where the vector of possible prices chosen is fixed, instead of allowing for

random pricing or menu pricing.

The monopolist in our setting has data on past purchase decisions by the population of consumers

and seeks to maximize profits in a counterfactual setting in which prices can be set at levels not

yet observed in the data for a given set of products. In our setting, the fundamental state is the

distribution F (θ) describing the population of discrete types. If the monopolist knew this state

exactly, it could easily construct a demand function for its product. We will denote demand as

D(F (θ), p). Here, p is a price vector and D(F (θ), p) is the demand vector, where both quantities are

vectors because we assume that the monopolist can sell multiple brands. A monopolist’s regret is a

mapping from any chosen price and given distribution of preferences into a scalar which measures

how “far” the profits resulting from the chosen price are from the profits that would result from the

optimal price if the candidate distribution of preferences were the true distribution. Maximum regret

for the monopolist, given a choice of a price vector p and the potential distributions of types H[F (θ)],

is defined as:

R(p,H[F (θ)]) = max
F (θ)∈H[F (θ)]

p∗(F (θ))D(F (θ), p∗)− pD(F (θ), p) (12)

The first term in equation (12) denotes the optimal profits for the monopolist if it knew that the

true distribution of types was F (θ). Here, p∗ is the price vector that implements this ideal profit

level. From now on, we will denote the ideal profit level given a state F (θ) as π∗(F (θ)). In addition,

we will simplify notation by alluding to the quantity pD(F (θ), p) as π(p, F (θ)), the profits earned

by the monopolist in state F (θ) given some chosen price vector p. The key empirical challenge is

estimating π(p, F (θ)) for every possible distribution of types.

For every potential price, we calculate demand for each distribution of preferences. We find the

optimal price as the price with the highest demand for any given distribution and regret for any

other price is the difference between the profit under that price and the optimal price. Once we have

calculated the regret for every potential price and distribution combination, we can easily calculate

the maximum regret for any price (maximum over distributions). Then, we choose the price which

minimizes the maximum regret. To be clear, we can define the monopolist’s minimax-regret, given

the identification region H[F (θ)], as:

MMR(H[F (θ)]) = min
p

max
F (θ)∈H[F (θ)]

π∗(F (θ))− π(p, F (θ)) (13)

For any combination of (p, F (θ)), a monopolist’s regret will stem from either overpricing or un-

derpricing based on whether p is greater than or less than p∗, respectively. In the Bayesian setup,

this overpricing and underpricing for each (p, F (θ)) pair is weighted by a subjective Bayesian prior

over H[F (·)] and regret minimization with respect to this weighting is equivalent to expected profit
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maximization.

We denote the minimax-regret solution as pMMR. Since the minimax-regret state space is directly

defined by the econometric exercise, the state space is complex in the sense that it is impossible to

obtain an analytical solution to this problem. This is an important way in which the current paper

differs from that of Bergemann and Schlag (2007), since their model relies on the set notion of an

ε neighborhood, given some size ε, and finds solutions analytically. In practice, implementing the

minimax-regret solution requires a multi-stage algorithm given H[F (θ)]. First, for each distribution

F (θ) and each feasible price vector p, we compute the demand vector D(F (θ), p). Then, we compute

the ideal profit given for each F (θ). Afterward, we compute the maximum regret for each price vector

over the identification region for feasible distributions. Finally, we minimize these maximum regrets

over all possible price vectors.

Before we move on to the oligopoly problem, we present a stylized example meant to illustrate

the way one can think about the monopolist’s minimax-regret problem.

4.1.1 Stylized Example

This section presents a simple example of the monopolist minimax-regret problem for one good. We

assume that there is one preference parameter which translates directly into demand with feasible

values in [1, 2] given our econometric input. This is a much simplified version of our model, in which

we must first translate partially identified distributions of types into demand in a non-trivial way.

The benefit is that it provides intuition for minimax-regret in a very simple framework. Suppose, that

given the possible distributions in H[F (θ)], the monopolist knows that, for a given p, the range of

demand is [1−2p,1−p], where this range comes from the mapping D(F (θ), p), taken over H[F (θ)] for

each p. We will assume the marginal cost equals zero for simplicity. The monopolist’s minimax-regret

problem is:

min
p

max
F (θ)∈H[F (θ)]

π∗(F (θ))− π(p, F (θ)) ⇐⇒

min
p

max
β∈[1,2]

1

4β
− p+ βp2

Now, when the monopolist solves for his maximum regret over β given his choice of price, he only

has to consider two states, β ∈ {1, 2}. This is because, given the optimal price p∗(F (θ)), the profit

function is monotonically decreasing on R+ going in both directions from that optimum since profit

is a quadratic function of price. This implies that for any given price, the maximum regret will be

one of the endpoints of the range of β, since the optimal price given β is monotonically decreasing

in β. Thus, we can map the range of β directly into a range of optimal prices, p∗(β), and for any

given p, maximum regret will occur at the maximum possible distance from a feasible p∗(β), which

will always correspond to an extreme value of β. In our example, the regret functions for p given

β ∈ {1, 2} are:

R(β = 1, p) =
1

4
− p+ p2
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R(β = 2, p) =
1

8
− p+ 2p2

The first function is minimized with zero regret at p = 1
2
, while the second is minimized at p = 1

4
.

Each function is monotonically increasing in both directions from its respective minimum, so we know

that the minimax-regret must occur in the range [1
4
, 1

2
] at the point where both of these functions

have identical regret values given p. This occurs when:

1

4
− p+ p2 =

1

8
− p+ 2p2 ⇒ pMMR =

1√
8

The solution is easy to verify. If p is increased or decreased from pMMR, the maximum regret

increases because one of the two regret functions corresponding to β ∈ {1, 2} must increase. This

provides some insight into the MMR solution that we will derive in our pricing experiments in the

next section. For a given set of distributions H[F (θ)], there will be an extreme distribution that

corresponds to the minimum and maximum demand for a given price. For that price, it will then be

possible to compute the maximum regret, which will then be compared over all prices to derive the

final solution, which will balance the potential losses from pricing low in a low elasticity state and

pricing high in a high elasticity state.

4.2 Oligopoly

In addition to the monopolist’s problem specified above, we analyze a static oligopoly game. In this

setting, every firm shares the same information set and evaluates payoffs according to minimax-regret

over H[F (θ)], given the other firms’ prices p−. This extends the assumption that the firm and the

researcher have the same information set to one where both firms and the researcher have the same

information set, which we believe is more reasonable in situations where firms observe similar limited

data to base their pricing decisions on.27 A further more detailed model where firms have only partial

information about the other firms’ information sets (or their perceptions of the distribution of types)

would be interesting, but for now we stick to this base case and leave this extension to future work.

Let firms be indexed by j corresponding to J different sets of brands. The firms play a game

where each evaluates outcomes by minimizing maximum regret over possible price vectors given their

opponents’ prices. The firms evaluate maximum regret for pj given the opponents’ price vector p−j

as follows:

R(pj, p−j, F (θ)) = max
F (θ)∈H[F (θ)]

p∗j(F (θ), p−j)D(F (θ), p∗j , p−j)− pjD(F (θ), pj, p−j) (14)

Here, the firm evaluates regret at a given state of nature conditional on his opponents’ prices. His

27Our empirical example is one situation where this may be reasonable.
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minimax-regret given p−j is:

MMR(H[F (θ)], p−j) = min
pj

max
F (θ)∈H[F (θ)]

π∗(F (θ), p−j)− π(pj, p−j,F (θ)) (15)

π∗(F (θ), p−j) is the ideal profit for firm j, given a specific distribution of types drawn from the

identification set and p−j. π(pj, p−j, F (θ)) is the profit for firm j given the type distribution and

opponent’s price. In the game that the firms play, the action space is the set of feasible non-negative

prices, and we restrict each firm to the use of pure strategies. The game is one of complete information

between players in the sense that each firm knows the uncertainty faced by the other with respect to

the distribution of types. We assume that both firms have common knowledge and look for a pure

strategy Nash equilibrium in price vectors. We say that firm prices pNE are a Nash equilibrium if the

following best response conditions are simultaneously satisfied:

pNEj ∈ arg min
pj

max
F (θ)∈H[F (θ)]

π∗(F (θ), pNE−j )− π(pj, p
NE
−j , F (θ)), ∀j ∈ J (16)

In our simulation described in the next section we find a pure strategy equilibrium using the best

response curves of each firm to his opponent’s price, given the identification region H[F (θ)].

5 Empirical Analysis

The purposes of this section are (i) to compare the results of our model to those of the most commonly

used discrete choice models and (ii) to show an example of how our method can be applied to data.

We will start with a simulation experiment in Section 5.1 where we show that when the underlying

data violate the i.i.d. assumption of the standard discrete choice models, our model provides a more

reliable and robust pricing recommendation.

We then consider panel data from milk purchases from two competing retailers in Section 5.2.

We show that our methodology is applicable in this real-world setting and that it returns sensible

counterfactual recommendations.

5.1 Simulation Experiment of Firm Problem

In order to illustrate our methodology, we study a simulated market where the firm or firms have

information on consumer purchase behavior that they use to determine how prices should be set. The

simulation gives us the ability to study how solving the firm problem with our method compares to

what the firm would do if it knew the true distribution of preferences in the population. In addition,

it allows us to study the predictions of our model compared to more familiar models, such as a mixed

logit model, when estimated with the same data.

We simulate the preferences of 100 individuals with utility uijt = αij+βipijt, as was done in Section

27



2.3.28 We assume that consumer i chooses product k at time t given the decision set dit based on the

decision rules in model 2 described in Section 2. We set δ∗ = 0.20. Given our parameterization, this

implies that random utility shocks here are at most 20% of the base value of the preference for product

1. We simulate three types of consumers. The first type have i.i.d. errors drawn from a uniform

distribution between [−δ∗, δ∗]. The second type have errors that are correlated across products. This

correlation is generated in each period by first drawing ε1t uniformly from the range [−δ, δ], resulting

in ε̂1t. We then draw ε2t uniformly from [ε̂1t − δ, δ] if ε̂1t > 0 and from [−δ, ε̂1t + δ] if ε̂1t < 0. The

third type have errors that are correlated over time. This correlation is generated for each product

by first drawing εj1 uniformly from the range [−δ, δ], resulting in ε̂j1. We then draw εj1 uniformly

from [ε̂j1 − δ, δ] if ε̂j1 > 0 and from [−δ, ε̂j1 + δ] if ε̂j1 < 0. We then repeat for period three (and so

on) replacing ε̂j1 with ε̂j2.

We proceed first by partially identifying each consumer’s preferences as was illustrated in Section

2.3. Given each individual’s choice data, we can partially identify true parameters as being within

this feasible set. Next we turn to the industry pricing problem. To evaluate our model we compare

it with two benchmarks: (1) ex post efficient prices based on true parameters and (2) a mixed logit

with multivariate normal mixing.29

Monopoly

We begin by considering a multi-product monopolist possessing the purchasing decisions of each set

of 100 consumers over 100 periods. The firm must now set prices for each of its goods. In Table 1

we show three options for the optimal prices: (1) ex post efficient prices, from the simulated values

of each individual; (2) optimal prices from the mixed logit model where we consider the prices that

maximize expected profits; and (3) optimal prices from the minimax-regret model as described in

Section 4. Note that for the mixed logit and the minimax-regret model we consider prices in 0.09

increments between 0.09 and 0.90.30

The first set of results in Table 1 are for the case where consumers are drawn with i.i.d. errors.

In this case the minimax-regret model estimates prices that are close to ex post,with firms earning

nearly 100% of potential ex post profits. The mixed logit optimal prices are also close to the ex

28For clarity, as was done in Section 2.3, we set the utility of the outside option for each person and time period to 0
(location invariance) and normalize the value of αi1 = 1 ∀i (scale invariance) for identification. Throughout the analysis
there are two possible products, so there are two free preference parameters for each individual in the population. For
this population, we draw αi2 from a uniform distribution on [0.5, 1.5] and βi independently from a uniform distribution
on the range [−3.75,−1.75]. We then simulate 100 time periods of choices (corresponding to about two years of weekly
data) of decisions for each individual. In order to do so, we assume that both products are offered in every period and
that their prices are drawn independently and uniformly from the range [0.1, 1.0]. We define the feasible identification
region for (αi2, βi) to be [0, 5] × [−5, 0] so that the feasible identification region covers a large region of reasonable
relative preferences.

29Our mixed logit model is specified as ui,j,t = αi,j + βiPj,t + εi,j,t for j = 1, 2 and ui,0,t = εi,0,t. We assume the ε
are distributed i.i.d. Type 1 Extreme Value. For heterogeneity we assume (αi,1, αi,2, βi) ∼ N((α1, α2, β),Σ). We use
simulated maximum likelihood with 100 draws to estimate α1, α2, β and the Cholesky decomposition of Σ (we follow
the estimation procedure in Revelt and Train (1998)).

30Using a finer grid did not materially affect the qualitative findings in this section.
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post efficient ones, and recover nearly 90% of the optimal ex post profits. This suggests that both

models recommend nearly ex post efficient prices when consumers have i.i.d. error draws. The

second and third sets of results in Table 1, where consumers have either brand correlated error shocks

or time correlated error shocks, are noticeably different. Here while the minimax-regret model sill

recommends prices close to ex post efficient prices, the optimal prices from the mixed logit are far

too high. This is particularly evident for consumer type 3 with time correlated shocks.

Consumer Type Pricing Model Price 1 Price 2 % of optimal profits
i.i.d. shocks

ex post efficient 0.27 0.36
mixed logit 0.27 0.45 90%

minimax-regret 0.27 0.36 99%
Brand correlated shocks

ex post efficient 0.26 0.36
mixed logit 0.36 0.36 84%

minimax-regret 0.27 0.36 98%
Time correlated shocks

ex post efficient 0.28 0.39
mixed logit 0.90 0.90 0%

minimax-regret 0.27 0.36 96%

Table 1: Results of monopoly pricing from simulation. See text for details on simulation design.

Duopoly

We now turn to the case of multiple single product firms in a differentiated goods industry. We focus

on the duopoly case, pool all 300 simulated consumers from the monopoly experiment (100 consumers

of each type) and now assume that the two products are sold by two different firms. Each firm must

now choose the price for its good taking into account what the other firm will do. We solve for the

equilibrium of the pricing game by finding the intersection of the firms’ best response curves, depicted

in Figure 5. We also show the true ex post efficient response curves for the firms in this figure.

Here the minimax-regret model estimates best response curves close to the ex post efficient best

response curve. The model recommends duopoly prices of 0.18 for each product. In comparison,

the mixed logit model here would recommend duopoly prices of 0.90 for each product. This occurs

because, as before, consumers in this simulation have non-i.i.d. error draws.31

31As a point of further comparison, we have estimated the optimal prices with a different non-prior based decision
rule: maxmin. Under maxmin preferences, the firm chooses the price that maximizes its profits given the realization
of worst-case demand for that price, selected from the set of feasible demand curves (see e.g. Gilboa and Schmeidler
(1989)). We find that, consistent with the arguments discussed in Bergemann and Schlag (2008) and Manski (2005),
the maxmin criterion tends to prescribe overly conservative decisions. For example, in the duopoly case we find that
the maxmin duopoly prices are 0.09 and 0.09 and the model recovers only about 50% of the ex-post optimal profits.
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Figure 5: Best response curves in duopoly simulation. See text for details on simulation design.
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Simulation Results with Estimating δ

The simulation results for the minimax-regret model for both the monopoly and duopoly results

assume that we know the true value of δ. In this section estimate a value of δ, as described in

Section 3.2, and then determine optimal prices from the minimax-regret model. We use the same 300

consumers from above and re-estimate the monopoly and duopoly prices with an estimated value of

δ. Recall that the true value of δ used to generate the data was 0.20. For these data, the lowest value

of δ that can rationalize all observed decisions is 0.19. With the bias adjustment, the estimated value

of δ is 0.285, which is a conservative estimate of 0.20. We report the recommended prices when we

assume we know the true δ and when we estimate it to be 0.285 in Table 2. For both the monopoly

and duopoly cases, the suggested prices based on the estimated δ are the same as when we know δ’s

true value. This need not be the case. For example, if we assume δ = 0.5 and again make optimal

recommended prices, they will differ substantially as the final row in the table illustrates.

Monopoly Duopoly
δ Price 1 Price 2 Price 1 Price 2
Assumed to be 0.2 0.27 0.36 0.18 0.18
Estimated to be 0.285 0.27 0.36 0.18 0.18
Assumed to be 0.5 0.36 0.45 0.27 0.27

Table 2: Simulation results for monopoly and duopoly pricing when δ is estimated. Actual δ used to
generate data is 0.20. See text for more details on simulation design.

5.2 Field Data Analysis

The purpose of this section is to provide an illustrative example to show how our method can be

used to study pricing in an empirical context with field data. We apply our model to six years of IRI

panel data from the fluid milk category in Pittsfield, MA. Milk is a frequently purchased, durable,

non-storable, product category in which the top selling UPCs are private label brands. One reason

for considering milk is that it is non-storable and is thus unlikely to be stockpiled. This is important

because stockpiling, in addition to creating complex error structures that could invalidate standard

logit model assumptions, will generate a dynamic choice process, the modeling of which is beyond

the scope of this paper (for papers that do model this behavior see Erdem, Imai, and Keane (2003)

or Hendel and Nevo (2006)).

We choose to study the pricing decisions of two neighboring retailers that have the highest unit

sales in the IRI panel data in Pittsfield, MA. As is common for retail milk prices, both stores charge

the same price for all private label, one gallon milk products independent of fat content (Khan, Misra,

and Singh (2012)). For these two stores we observe nearly 6 years (297 weeks) of panel data for 396

panelists.32 Figure 6 displays the average weekly prices for each store over the sample. The median

prices in the data for the two stores over the 6 years are $3.20 and $3.22 per gallon, respectively. The

32We consider panelists who make at least 50 milk purchases from this store in six years.
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correlation in prices across stores is 0.44. On average, 9% of panelists buy from store 1 and 17% of

panelists buy from store 2 in a given week. We find 55% of the panelists make at least one purchase

in each store over the six years.

Figure 6: Observed prices for private label, 1 gallon milk for two competing stores in Pittsfield, MA.

To compute optimal prices we must have a measure of store-level marginal costs. The majority

of this cost is likely to be the wholesale price the stores pay for milk. As a proxy for wholesale prices,

we collect average monthly Co-op prices33 in Massachusetts for 2008 (data from USDA’s Agricultural

Marketing Services). Note this time period overlaps with the last 6 months of our panel data. In the

overlapping time period we find the average wholesale price is $0.60 per gallon and the average retail

prices at the two stores are $2.68 and $2.45 per gallon, respectively.

To apply our model in this setting we first need to calibrate a value of φ. Einav, Leibtag, and

Nevo (2010) study a panel scanner data setting similar to our own, and report two estimates for

the level of data contamination. First, they report that about 20% of purchase trips in the panel

scanner data that they observe are incorrectly recorded. Second, they report that approximately 50%

of actual purchase trips are omitted in the scanner data. In our data, consumers purchase from either

store in 26.5% of weeks. From this analysis, we construct two alternative measures of the extent of

data contamination that might be present in our data, φ, defined as the total proportion of purchase

recording errors. Our first measure assumes that only the first type of error (observed purchases

33We will assume that this is each firms’ marginal costs. It is realistic to assume that each pays the same wholesale
price, but unrealistic to assume that this wholesale price is the entirety of each firm’s marginal cost, and therefore we
view our optimal prices likely as being lower bounds on the true optimal prices for each store.
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that are incorrect) occurs. This suggests that 20% of the 26.5% of purchases made every week are

contaminated, or that 5.3% of all purchase/no-purchase decisions are contaminated. Our second

measure allows for data contamination stemming from purchases that are not recorded, suggesting

that 10.6% (50% of 26.5% − 5.3%) purchases were never recorded in the scanner data in our context.

As there is some room for interpretation in the way the Einav, Leibtag, and Nevo (2010) results link

to our setting, we estimate δ and study firm pricing in the two alternative cases where φ = 0.053 and

φ = 0.106. We also investigate other nearby values for φ to ensure that our results are robust to this

calibration.

For φ = 0.053, we find that the lowest value of δ that can rationalize all observed decisions in

the data is 0.37. Using the bias correction methodology discussed in Section 3.2, the estimated value

of δ as 0.442. Using δ = 0.442 and φ = 0.053 we estimate preferences and compute the minimax-

regret best response curves for each store (assuming a wholesale price of $0.60 per gallon). Our

estimates yield a unique pure strategy equilibrium where both stores charge $2.40/gallon for private

label milk.34 We believe that this is a reasonable estimate for this market based on two observations.

First, our estimates are similar to the observed price levels in the raw data. Second, we estimate

that the two stores charge the same price. This is consistent with the observation that the median

difference in weekly prices between the two stores is zero. Repeating the analysis for φ = 0.106 yields

a store 1 price estimate of $2.40/gallon and a store 2 estimate of $2.30/gallon. Here, the lower price

for store 2 suggests that higher φ, leading to wider bounds on our preference estimates, results in

slightly more conservative pricing.

6 Conclusion

This paper presents an econometric framework that partially identifies consumer preferences and

market demand under weak assumptions in a setting with panel data. The identification restrictions

we make combine non-parametric methods from the Samuelsonian revealed preference tradition with

an attribute based product representation commonly used in the discrete choice literature. Overall,

the cost of maintaining very weak assumptions on the structure of consumer utilities is that we produce

bounds on the distribution of preferences instead of a point estimate, as almost all work in this area

does. However, the predictions that we can make with our methodology are more credible than

those made under the traditionally strong assumptions found in this literature. We view this work

as complementary to past work since the results from an approach with more (correct) assumptions

should fall within the bounds that our model provides, while the placement of point identified results

relative to our bounds shed light on the potential direction of bias in these results.

The purpose of developing and analyzing our econometric framework is to better model and

understand how firms price in an environment with limited information leading to a high level of

uncertainty. We characterize this uncertainty here with the notion of ambiguity though this is just

34The bootstrap standard errors, based on 5,000 iterations, for the prices are 0.02 and 0.01, respectively.
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one possibility for how firms with limited information could price (relying more on simple heuristics is

another possibility). We model the firm pricing problem under ambiguity, borrowing from the theory

literature, and link this to the econometric framework by assuming that the ambiguity the firm faces

is described by the partially identified distribution of the demand curve. We investigate this joint

framework in both monopoly and oligopoly settings to increase the scope of the framework.

Perhaps the most substantial contribution of this paper is to develop a joint theoretical and

empirical framework that is a credible alternative to the full information mixed logit and expected

profit maximization workhorse model used to analyze firm decision-making. Through simulations we

show how our framework performs relative to this standard approach, concluding that a robust pricing

framework can perform as well or better in terms of predicting what prices firms actually choose.

We also illustrate how the methodology can be applied in an actual empirical setting. In situations

where firms have limited information and the combined logit-expected profit maximization approach

seems implausible, we provide a credible framework that can be used to study standard industrial

organization problems without assuming such a high bar for firm knowledge and decision-making.

34



References

Abe, M. (1995): “Nonparametric Density Estimation Method for Brand Choice Using Scanner

Data,” Marketing Science, 14(3), 300–325.

Bajari, P., and L. Benkard (2003): “Discrete Choice Models as Structural Models of Demand:

Economic Implications of Common Approaches,” Working Paper.

Ben-Avika, M., D. McFadden, M. Abe, U. Bockenholt, D. Bolduc, D. Gopinath,

T. Morikawa, V. Ramaswamy, V. Rao, D. Revelt, and D. Steinberg (1997): “Mod-

eling Methods for Discrete Choice Analysis,” Marketing Letters, 8(3), 273–286.

Bergemann, D., and S. Morris (2005): “Robust Mechanism Design,” Econometrica, 73(6), 1771–

1813.

Bergemann, D., and K. Schlag (2007): “Robust Monopoly Pricing,” Cowles Foundation Dis-

cussion Papers 1527.

(2008): “Pricing Without Priors,” Journal of the European Economic Association, 6, 560–

569.

Berry, S., and P. Haile (2009): “Nonparametric Identification of Multinomial Choice Demand

Models with Heterogeneous Consumers,” Working Paper.

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilibrium,”

Econometrica, 63, 841–890.

Blundell, R., M. Browning, and I. Crawford (2003): “Nonparametric Engel Curves and

Revealed Preferences,” Econometrica, 71(1), 205–240.

(2008): “Best Nonparametric Bounds on Demand Responses,” Econometrica, 76(6), 1227–

1262.

Bronnenberg, B., M. Kruger, and C. Mela (2008): “The IRI Marketing Data Set,” Marketing

Science, 27(4), 745–748.

Dreze, X., S. Hoch, and M. Purk (1994): “Shelf Management and Space Elasticity,” Journal of

Retailing, 70(4), 301–326.

Einav, L., E. Leibtag, and A. Nevo (2010): “Recording Discrepancies in Nielsen Homescan

Data: Are They Present and Do They Matter?,” Quantitative Marketing and Economics, 8(2),

207–239.

Erdem, T., S. Imai, and M. Keane (2003): “Brand and Quantity Choice Dynamics Under Price

Uncertainty,” Quantitative Marketing and Economics, 1(1), 5–64.

35



Erdem, T., and M. Keane (1996): “Decision-Making Under Uncertainty: Capturing Dynamic

Brand Choice Processes in Turbulent Consumer Goods Markets,” Quantitative Marketing and

Economics, 15(1), 1–20.

Erdem, T., M. Keane, and B. Sun (1999): “Missing Price and Coupon Availability Data in

Scanner Panels: Correcting for the Self-Selection Bias in Choice Model Parameters,” Journal of

Econometrics, 89, 177–196.

Fiebig, D., M. Keane, J. Louviere, and N. Wasi (2010): “The Generalized Multinomial Logit

Model: Accounting for Scale and Coefficient Heterogeneity,” Marketing Science, 29(3), 393–421.

Fong, N., D. Simester, and E. Anderson (2011): “Private Label vs National Brand Price

Sensitivity: Evaluating Non-experimental Identification Strategies,” Working Paper.

Geweke, J. (Forthcoming): “Nonparametric Bayesian Modeling of Monotone Preferences for Dis-

crete Choice Experiments,” Journal of Econometrics.

Gilboa, I., and D. Schmeidler (1989): “Maxmin Expected Utility with Non-Unique Prior,”

Journal of Mathematical Economics, 18(1), 141–153.

Haistie, T., and R. Tibshirani (1990): Generalized Additive Models. CRC Press.

Hendel, I., and A. Nevo (2006): “Measuring the Implications of Sales and Consumer Inventory

Behavior,” Econometrica, 74(6), 1637–1673.

Horowitz, J., and C. Manski (1995): “Identification and Robustness with Contaminated and

Corrupted Data,” Econometrica, 63(2), 281–302.

Karunamuni, R., and T. Alberts (2005): “On Boundary Correction in Kernel Density Estima-

tion,” Statistical Methodology, 2(3), 191–212.

Keane, M. (1997): “Modeling Heterogeneity and State Dependence in Consumer Choice Behavior,”

Journal of Business and Economic Statistics, 15(3), 310–327.

Keane, M., and R. Sauer (2009): “Classification Error in Dynamic Discrete Choice Models:

Implications for Female Labor Supply Behavior,” Econometrica, 77(3), 975–991.

(2010): “A Computationally Practical Simulation Estimation Algorithm for Dynamic Panel

Data Models with Unobserved Endogenous State Variables,” International Economic Review, 51(4),

925–958.

Khan, R., K. Misra, and V. Singh (2012): “Will a Fat Tax Work?,” Working Paper, London

Business School.

36



Lancaster, K. (1966): “A New Approach to Consumer Theory,” Journal of Political Economy,

74(2), 132–157.

Manski, C. (1975): “Maximum Score Estimation of the Stochastic Utility Model of Choice,” Journal

of Econometrics, 3(3), 205–228.

(2003): Partial Identification of Probability Distributions. Springer-Verlag, New York, NY.

(2005): Social Choice with Partial Knowledge of Treatment Response. Princeton University

Press, Princeton, NJ.

(2007): “Partial Identification of Counterfactual Choice Probabilities,” International Eco-

nomic Review, 48(4), 1393–1410.

Matzkin, R. (1993): “Nonparametric Identification and Estimation of Polychotomous Choice Mod-

els,” Journal of Econometrics, 58(1-2), 137–169.

McFadden, D. (1974): Conditional Logit Analysis of Qualitative Choice Behavior Frontiers in

Econometrics. Academic Press, New York, NY.

Renou, L., and K. Schlag (2010): “The Common Structure of Statistical Models of Truncation,

Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models,”

Journal of Economic Theory, 145, 264–286.

Revelt, D., and K. Train (1998): “Mixed Logit with Repeated Choices: Households’ Choices of

Appliance Efficiency Level,” The Review of Economics and Statistics, 80(4), pp. 647–657.

Samuelson, P. (1938): “The Numerical Representation of Ordered Classifications and the Concept

of Utility,” Review of Economic Studies, 6(1), 65–70.

(1948): “Consumption Theory in Terms of Revealed Preference,” Economica, 15(60), 243–

253.

Savage, L. (1951): “The Theory of Statistical Decision,” Journal of the American Statistical Asso-

ciation, 46, 55–67.

Varian, H. (1982): “The Nonparametric Approach to Demand Analysis,” Econometrica, 50(4),

945–974.

(1983): “Non-parametric Tests of Consumer Behaviour,” Review of Economic Studies, 50(1),

99–110.

37



A Cross-Sectional Identification

In many cases a panel sample may not be representative of the entire market. In this appendix we

present a framework to use cross-sectional identification in conjunction with panel identification to

form bounds on demand parameters when the panel is not representative of the population. We

add two elements to the models outlined in Section 2. First, we posit that in addition to observing

the panel across each of T time periods, we now also observe aggregate purchase data for each time

period. Second, we assume that the panel accurately represents q% of the population. For example,

if the projected market size were 100,000 and the panel size were 2,000, the assumption that the

panel represents 80% of the population implies that the demand estimates from the panel represent

the quantity demanded by 80,000 of the 100,000 in the population.

We incorporate cross-sectional identification to develop bounds on the population distribution of

preferences using the aggregate data and panel data together in each time period. Since the panel

represents the same q% of the population in each time period, once we account for the information

learned from the panel in the aggregate data, the remaining (100− q)% of the population is the same

over each time period. Partition the overall population Ψ into two sets: Γ, the portion represented by

the panel, and Υ, the portion not represented by the panel (Γ∪Υ ≡ Ψ). Our identification proceeds

in two steps. First, we use one of the four models developed in Section 2 to partially identify the

distribution of preferences in the panel sample. Next, we represent the purchases made by Γ with the

data from the panel, proportionally scaled up, and construct an observation each period for aggregate

purchases made by the part of the population not represented by the panel. If Qt(Ψ) is the vector of

purchases in period t for the entire population and Qt(Γ) is the vector of purchases for the population

represented by the panel, the aggregate purchase observation for Υ in each t is:

Qt(Υ) = Qt(Ψ)−Qt(Γ) (17)

To place bounds on demand parameters for the entire population, we combine the bounds on

preferences derived from the panel data with a bound on the aggregate preferences for the remaining

population derived from observing Qt(Υ) over all time periods. Once we construct the residual

observation Qt(Υ) from aggregate and panel data, identification of the preferences of consumers in

Υ is independent of the panel preference identification.

It is important to note that the assumption that the panel represents q% of the population is

testable within our framework. If the bounds on the preference parameters of Υ are the empty set,

then as long as we accept the assumptions on inter-temporal variations in preferences from the panel

model in Section 2 that we are using, then q% is assumed to be too large. For example, this would

be the case if Qt(Υ) ever has any negative entries. This is a one-sided test since the data will never

reveal that q is too low.

To partially identify the distribution of preferences in Υ we construct tightest bounds from the

series of observations (Qt(Υ), pt) where pt is the price vector for each t. We use two theoretical re-
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strictions that must be satisfied by the population Υ. The first concerns dominated price movements.

Here x denotes a specific product and x− denotes all other products.

Condition 1 (Purchase Consistency I).

∀t 6= t′,∀x,Qxt ≥ Qxt′ if pxt ≤ pxt′ and px−t ≥ px−t′ (18)

This condition says that if the price of one product goes down and the prices of all other products

go up, then we must see a higher aggregate purchase level for x in Υ.

The second condition concerns purchase behavior of the outside option x0 relative to certain types

of price changes.

Condition 2 (Purchase Consistency II).

∀t 6= t′ Qx0t ≤ Qx0t′ if pt ≤ pt′ (19)

This condition states that if the prices of all goods go weakly up or down, then the amount of

individuals not purchasing also moves weakly up or down.

We further define the following two objects:

Φx(pc) ≡ p : px ≥ pxc, px− ≤ px−c

∆x(pc) ≡ p : px ≤ pxc, px− ≥ px−c

For any counterfactual price vector pc, Φx(pc) is the set of feasible price vectors such that the price of

product x is weakly greater than pxc (the price of product x in the vector pc) and the price of every

other product is weakly smaller than its price in pc. ∆x(pc) is the converse, where px is weakly lower

than pxc and all other products are weakly more expensive.

We can now define, given purchase consistency conditions I and II, the bounds on demand for

product x ∈ D under counterfactual price vector pc for Υ:

H[P (y(D) = x)|Υ] = [maxp1,....,pT∈Φx(pc)Qxt , 1−maxp1,....,pT∈∆x(pc)Qx−t] (20)

The bounds on preferences and counterfactual demand for the residual population Υ can then

be combined with those from the population represented by the panel, Γ, to find the bounds for

preferences and counterfactual demand for the entire population Ψ:

H[P (y(D) = x)|pc] = qH[P (y(D) = x)|Γ, pc] + (1− q)H[P (y(D) = x)|Υ, pc] (21)

The simulation in the next section reveals that both the panel and cross-sectional components of

this model add significant predictive power by tightening the bounds on preferences and counterfactual

demand.
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Simulation with Cross-Sectional and Panel Data

To simulate the scenario where we have cross-sectional and panel data, we simulate two sets of

individuals. The first set represents the panelists and second set represents the consumers that are

not represented in the panel. For the analysis we will observe (a) all decisions made in every time

period by the panelists and (b) aggregate cross-sectional decisions (across both groups) for every time

period.

In this setting we consider the preferences of the panelists to represent 80% of the entire population.

The utility formulation for the panelists is exactly as in Section 2.3. For the consumers not represented

by the panel, we draw the αi2 parameter from a uniform distribution on [0.0, 2.0] and βi independently

from a uniform distribution on the range [−2.5,−1.0]. Therefore, these consumers are on average less

price sensitive and have more varied tastes for product 2 than the panelists. We simulate 200 time

periods of data and simulate each panelist’s individual decisions and the aggregate decision across all

consumers.

We estimate the demand curves in four steps. First, we estimate the identification region for

each panelist based on their purchase data. Second, we bound the counterfactual demand for each

panelist. Third, we estimate the counterfactual bounds for the aggregate consumers not represented

in the panel. Fourth, we estimate the population’s demand curve bounds by adding the panel and

the aggregate estimates.

Figure 7 below displays three sets of bounds for each product’s demand curve. The first row

represents the demand curves using both the panel and the cross-sectional data. The second row

represents the demand curve using just the panel data and the third row represents the demand

curve using the cross-sectional data for the consumers not represented by the panel.

Observe that the estimated bounds with only the cross-sectional data are quite wide. This suggests

that while these data do provide some information, we cannot tightly bound the counterfactual

demand. On the other hand, as we have seen above, we can tightly bound the counterfactual demand

with panel data. The difference between these two charts shows the additional benefit of panel data in

estimating tight counterfactual bounds. We can now combine both pieces of information to create a

bound for the entire population (top row of Figure 7). In these charts observe that we get quite tight

bounds in the middle of the demand curve for prices between 0.35 and 0.65. However the bounds are

quite wide for higher price points. This is mainly driven by the fact that we estimate wide bounds

for the cross-sectional data at high price points. Overall this demand curve can be informative and

can be used for firm decision-making. In Figure 8 we display the joint demand curves when both

products are sold.

B Monte Carlo Studies of the Procedure to Estimate δ

In this section we study the performance of our estimator of δ, the bound on consumers’ utility

shocks. We do this through two Monte Carlo studies. In the first study, we abstract from any choice
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Figure 7: Partially identified demand curves if products were sold in isolation. The rows represent
the different levels of data and the columns represent the demand curves for product 1 and product
2, respectively.
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Figure 8: Partially identified demand curves if products were both product sold. The panels represent
the demand curves for product 1 and product 2, respectively.

model and study our estimator of the upper bound of the support from which a random variable is

drawn. The study is designed as follows. Fix some number of time periods T and set the number

of ‘consumers’ to be 20. For each of these 20 consumers, draw T realizations of δ uniformly from

[0, 0.10] and compute the maximum of the T draws for each of the 20 consumers, yielding 20 maximum

values of δ. Then use these 20 maximum values of δ to estimate the upper bound of the interval from

which δ was drawn (the true value is 0.10) as described in Section 3.2. We then repeat this estimation

procedure 100 times for each integer value of T between 1 and 100. The results are reported in Figure

9. These suggest that we have a conservative estimate of the true maximum and as the number of

realizations increase, we asymptote to the correct value.

The second Monte Carlo study we perform involves an actual choice model. Each study involves

N consumers and T time periods over which choices are made. Within a consumer, a time period is

distinguished by the value of δnt for that consumer n during a time period t, which is drawn uniformly

from [0, 0.10]. We use the same simulation as in Section 2.1. Each time period, a consumer makes a

choice according to buy one of the two goods in the market or the outside option. Then we choose

the lowest value of δ for each consumer that can rationalize the choices he made during the T time

periods. Then we collect these N -lowest-values-of-δ and estimate δ according to the method described

in Section 3.2. We search over a grid of possible δs with 0.025 spacing. Finally, we repeat 40 times for

each combination of N and T . The important statistic here is to understand how often we estimate

a value of δ that is less than 0.10 as this can lead to a bias in our discrete choice estimates. The

results are reported in the Table 3, which shows that for reasonable numbers of consumers or time

periods our method performs well. In Figure 10 we report the box plot for the estimates of δ from

observing 50 consumers. Once again these do suggest that we have a conservative estimate of the true

maximum and as the number of time periods increase we observe less variance across simulations.
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Figure 9: Box plot of the estimated maximum of a distribution based on a small sample. Here we
consider 100 experiments with 20 individuals. The experiments differ in the number of observations
per consumer. The dark black lines represent the mean. The box represents the inner quartile range.
The whiskers extend to the most extreme data point which is no more than 1.5 times the length of
the box away from the box. The dots represent outliers that lie outside the whiskers.

Number of time periods
Number of consumers 50 100 500 1000
10 77.5% 32.5% 15.0% 2.5%
20 32.5% 10.0% 5.0% 0.0%
50 25.0% 0.0% 0.0% 0.0%

Table 3: Table represents the percentage of estimated δ that are below the true value 0.10 by changing
the number of consumers and the number of time periods. See text for more details on simulation
design.
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Figure 10: Box plot of the estimated values of δ after bias correction in a choice model setting. The
box plot represent the estimates of δ across 40 Monte Carlo experiments with 40 observations. The
experiments vary by the number of data points observed for each consumer (either 50, 100, 500 or
1,000). The dark black lines represent the mean. The box represents the inner quartile range. The
whiskers extend to the most extreme data point which is no more than 1.5 times the length of the
box away from the box. The dots represent outliers that lie outside the whiskers.
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