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Abstract

This paper proposes a practical way of estimating the cost of risky debt for use in the cost of capital.

The cost of debt is di®erent from both the promised yield and the risk-free rate, which are sometimes

used for this purpose, because of the expected probability of default. The Merton (1974) model of risky

debt is employed to decompose the promised yield spread into expected default and return premium

components. The advantage of the proposed approach is that all inputs are easily observable. The

parameters of the Merton model implied by these inputs are used to compute the expected return on

debt. It is argued that, although Merton's framework is simple and stylised, it can be used to estimate the

expected return as a fraction of the observed promised market yield in a way consistent with equilibrium.

The cost of debt is computed for parameter values that are typical for high grade and low grade debt.

It is found that, while using the promised yield as the cost of debt may be adequate for high grade debt,

it is likely to cause signi¯cant errors for high-yield bonds. In such cases the approach proposed in this

paper can be used to adjust the WACC for the probability of default on the ¯rm's debt.
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1 Introduction

This paper proposes an easily implementable analytical method of estimating the expected return on debt,

which is one of the most important inputs to the average weighted cost of capital (WACC). The WACC is

the required return on the operating assets of a ¯rm. It is used in valuation, capital budgeting, goal-setting,

performance measurement and regulation. Its value is one of the most important issues in corporate ¯nance.

Yet little attention has thus far been focused on estimating one of its key inputs - the cost of debt. It is

shown below that employing existing methods may result in signi¯cant errors in estimating the WACC.

The WACC cannot be observed and so must be estimated. The standard estimation method is to take

a weighted average of the estimated expected returns on debt and equity:

WACC = (1¡ pE)rD + pErE (1)

where: pE is the market-value proportion of the equity of the ¯rm, rD is the required return or the `cost' of

debt, and rE is the required return or `cost' of equity (Brealey and Myers (2000) and Bruner et al (1998)).1

The expected return on equity is formed by:

rE = r +¦E (2)

where r is the risk-free rate, and ¦E is the equity risk premium. The cost of equity is typically estimated

using the CAPM, APT or variants of the dividend growth model. Its estimation has been the subject of

extensive debate (see, for example, Bruner et al (1998) and Welch (2000)).

By contrast, little attention has been focused on estimating the cost of debt in the context of WACC

estimation.2 The most common way of estimating the cost of debt is to use the promised yield on newly-

issued debt of the ¯rm (see, for instance, Erhardt (1994)). However, this is not correct. The expected

return on debt should allow for the probability of default whereas the promised yield does not. If the

1Taxes are ignored throughout.
2Although models of credit risk have been widely studied (for good examples see Jarrow, Lando and Turnbull (1997) and

Du±e and Singleton (1999)), none is in a form that can be easily used to obtain the cost of debt for WACC estimation.



promised yield is used for the cost of debt then the WACC will be too high. In extreme cases, use of the

promised yield as the cost of debt could lead to the nonsensical result that the cost of debt exceeds the cost

of equity. As Kaplan and Stein (1990) say \Because of default risk expected returns [on corporate debt] are

undoubtedly lower than promised returns" (page 221).

An alternative to using the promised yields as the cost of debt that is sometimes advocated is to assume

that the debt has zero risk premium.3 However, this is also impossible, as there must be some chance of

default if the promised yield spread is positive. The debt risk premium must therefore be greater than zero

unless the default risk is entirely diversi¯able, which is unlikely.

The problem with obtaining the expected return on risky debt arises because the spread between the

promised yield and a riskless interest rate with the same maturity, liquidity and tax characteristics consists

of two parts. The ¯rst is the part that re°ects the chance of default. The second is the expected return

premium:

Promised yield spread = Expected default e®ect + Expected return premium

The expected return premium is the part of the yield spread that should be included in the cost of debt. So

the bias in the WACC resulting from using the promised yield rather than the expected return depends on

the proportion of the promised yield spread that is an expected return premium. If the whole spread were

an expected return premium then it would be correct to use the promised yield. However, this is impossible

as there must be some chance of default for the debt to be risky. Some part of the spread must be due to

expected default. Thus, the true cost of debt must lie somewhere between the two extremes of the promised

yield and the riskless rate. We can describe where in this range it falls by the proportion of the promised

yield spread that is an expected return premium.

The di®erence between the promised yield and the expected return on debt can have a material impact on

the WACC. For example, consider a highly-leveraged transaction with an equity ratio pE = 30% Suppose

that the riskless real rate is 3%, the risk-premium on the equity of the ¯rm is 6%, and the promised real

3This is often implemented by assuming that the debt has zero beta and using the CAPM.
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return on the debt is 7%. The conventional WACC calculation would give:

WACC(1) = 0:7£ 7%+ 0:3£ (3%+ 6%) = 7:6%

If half of the debt premium is simply compensation for the probability of default, the true expected return

on the debt is 5%. The true WACC is then:

WACC(2) = 0:7£ 5%+ 0:3£ (3%+ 6%) = 6:2%

With a real WACC of 7.6% the multiplier for a real perpetuity growing at 3% is 22 times. With a WACC

of 6.2% it is 31 times. Thus, the di®erence in the cost of debt estimates can have a material e®ect on

valuation. Table 1 shows that there is a simple linear relationship between the proportion of the spread

which is an expected return premium and must be included in the return on debt, and the WACC.

INSERT TABLE 1 HERE

The errors in the WACC which arise from using the conventional cost of debt estimates are most signi¯cant

when the debt is risky. However, this is also when the problem of estimating the expected return on debt

is greatest. As Brealey and Myers (2000) say: "This is the bad news: There is no easy or tractable way of

estimating the rate of return on most junk debt issues" (page 548).

Several approaches to estimating the expected return on debt might be taken when the promised yield

is not used as the cost of debt:

1. Empirically estimate the debt beta and use the CAPM to estimate the expected return on debt.

2. Empirically estimate the frequency of defaults and the size of write-downs and adjust the promised

yield to give the expected return.

3. Use a model to impute the required rate of return on debt from other inputs to the WACC.

The ¯rst approach is often infeasible because the relevant data are not available. Also, debt betas
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vary over time because of changes in interest rates and di®erent debt maturities. Moreover, the market risk

premium is di±cult to estimate. So the approach is hard to implement. The second approach is problematic

because ex-post default frequencies may be very di®erent from ex-ante probabilities (see Asquith et al (1989)

and Waldman et al (1998)).

The third approach is pursued here. The purpose of the paper is to propose a practical way of estimating

the cost of risky debt from the standard inputs to the WACC and other observed ¯rm characteristics. The

model employed is the Merton (1974) model of risky debt. This is used to decompose the promised yield

spread into the part that is compensation for expected default and the part that is an expected return

premium.

2 The cost of debt implied by the Merton model

The Merton model is the simplest equilibrium model of the relationship between corporate interest rates

and the inputs to the WACC. It assumes that the value of the ¯rm's assets follows a geometric Brownian

motion:

dV

V
= ¹dt+ ¾dWt (3)

where V is the value of the ¯rm's assets, ¹ and ¾ are constants, and Wt is a standard Wiener process.

The Merton model further assumes that the ¯rm has a single class of zero coupon risky debt of maturity

T . Other assumptions include a constant interest rate and a simple bankruptcy procedure; namely, if at

maturity the value of the assets is lower than the liability, the assets are handed over to the bondholders

without costs or violation of priority rules. The simplicity of the model has led to di±culties in using it

to explain the relationship between the absolute level of debt spreads, capital structure and asset volatility.

In the context of this paper, however, we are not interested in the absolute level of the spread. We simply

wish to divide the observed market spread between the part that represents expected default and the part

that is the expected return premium. If the Merton model picks up at least ¯rst-order e®ects relevant to

splitting the spread on risky debt, it can be used to estimate the expected return relative to the promised

yield. For this purpose the model has the merit of being an equilibrium model and being relatively simple.
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We test below whether the split of the spread that it gives is robust.

Neither the expected return on assets ¹ nor the asset volatility ¾ can be directly observed. Moreover, in

the presence of multiple issues of debt and debt with coupons and call provisions the value of debt maturity

T in the Merton model is not well de¯ned. The basic idea of this paper is to ¯nd the values for ¹, ¾ and

T that reconcile the Merton model with the observed market debt prices given ¯rm's capital structure and

other observed characteristics. Once the parameters of the asset distribution implied by the debt prices

are found, one can compute the expected return on debt which is consistent with this distribution and the

return on equity estimated from (2).

Merton applies the Black-Scholes option pricing analysis to value equity as a call option on ¯rm's assets.

Merton's formula can be written in a form that gives a relationship between the proportion of equity, pE,

the maturity of the debt, T; the volatility of the assets of the ¯rm, ¾; and the promised yield spread, sD (see

Appendix 1):

pE = N(d1)¡ (1¡ pE)esDTN(d2) (4)

where N(¢) is the cumulative normal distribution function and

d1 = [¡ ln(1¡ pE)¡ (sD ¡ ¾2=2)T ]=¾
p
T (5)

d2 = d1 ¡ ¾
p
T (6)

Equation (4) includes two unknowns { ¾ and T . However, another implication of the Merton model is

that the equity volatility4 ¾E satis¯es:

¾E = ¾N(d1)=pE (7)

We now have three observable inputs: pE, sD and ¾E, and two unknowns: ¾ and T . We solve equations

(4) and (7) simultaneously to ¯nd values of ¾ and T that are consistent with the observed values of pE, sD

and ¾E .
5 Thus, ¾ is computed as the implied volatility of the ¯rm's assets when the equity is viewed as

4In contrast to the asset volatility, the short-term equity volatility is easily observable either from option implied volatilities
or from analysis of historical returns data.

5The system of equations is well-behaved, and we generally had no di±culties solving it applying standard software such as
Mathematica. To assure a starting point for which standard numerical methods quickly yield a solution, one can solve equations
(4) and (7) separately for ¾ for a few ¯xed values of T (or vice versa). This procedure always converged for any reasonable
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a call option. The parameter T re°ects not only the actual maturities of di®erent debt issues in complex

capital structures, but also the presence of distress costs, strategic behaviour by equity holders, and other

complications not included in the Merton model but re°ected in the observed spread sD.

Once the values of ¾ and T are known, they are combined with the estimate of the expected return on

equity given by (2) to calculate the expected return on assets and debt as follows. Since equity in this model

is a call option on the assets and therefore has the same underlying source of risk as the assets, the risk

premia on assets ¼ and equity ¼E are related as:
6

¼

¼E
´ ¹¡ r
¹E ¡ r

=
¾

¾E
(8)

Substituting (7) for ¾E yields:

¼ = ¼EpE=N(d1) (9)

Now the expected return premium over the maturity period7 can be calculated as (see Appendix 2):

rD ¡ r = sD + 1

T
ln
h
N(d2 + ¼E

p
T=¾E) +

expf[¼EpE=N(d1)¡sD]Tg
1¡ pE N(¡d1 ¡ ¼E

p
T=¾E)

i
(10)

The second term of (10) is negative, as the expected return on debt is lower than the promised yield.

3 Numerical results

Table 2 shows the breakdown of the promised yield spread between the expected return premium and the

default risk for representative values of pE; sD; ¼E, and ¾E: The values of pE and sD that are used are

similar to those in Kaplan and Stein (1990). The equity risk premium is set at values that are commonly

starting points. The intersection of the to solution curves ¾(T ) from equations (4) and (7) can then be used as a starting point
for the system of these equations.

6¼E is the instantaneous risk premium on equity, which is di®erent from ¦E , the premium over a discrete horizon.
7Note that, unlike the return on assets and equity, the calculated return on debt is an annualised compounded return rather

than an instantaneous return.
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used. The volatility of equity is set at a typical level.

INSERT TABLE 2 HERE

Panel A of Table 2 shows the results for values for a typical high grade debt ¯rm. The ¯rst row shows

the base case with a proportion of equity of 70% and equity volatility of 30% per annum. The equity risk

premium is 6% per annum and the debt spread is 1% per annum. The expected return premium is 84 basis

points, so that most of the promised yield spread (84%) is an expected return premium. As a result, the

error from using the proposed yield as the cost of debt would be low in this case.

Panel B shows the results for high leverage ¯rm, with a proportion of equity of 30%. The volatility of

equity is higher, at 50% per annum, and the debt spread is higher, at 4%. For the base case, less than half

of the debt spread is an expected return premium. Although the promised yield spread is four times that

in Panel A, the expected return premium is less than doubled. In this case, most of the increase in the

promised yield spread between a typical leverage and a high leverage ¯rm is caused by an increased chance

of default. The proportion of the yield spread that represents an expected return premium is only forty

percent. As a result, the error in using the promised yield on debt as the cost of debt would be substantial

for a highly leveraged ¯rm with these parameter values.

4 Robustness of the approach

The proportion of the spread that is an expected return is not very sensitive to any input other than ¾E:

In particular, it can be seen from (10) it does not depend on the riskless interest rate. From Table 2, it

is relatively insensitive to realistic levels of variation in pE; sD and ¼E: The insensitivity to pE and ¼E

is important as these are variables that cannot be precisely estimated. It is sensitive to ¾E, but second

moments such as ¾E can be estimated quite accurately for equity returns. Thus, the procedure has the merit

of giving a result that is very sensitive only to a parameter that can be observed relatively accurately. We

also tested the e®ect of assuming that the equity premium estimate applies to the maturity period of the

debt rather than being an instantaneous premium. This makes little di®erence to the results.
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5 Conclusion

The cost of equity and the cost of debt are two key inputs to the weighted average cost of capital. While

the former has been the subject of extensive debate, little attention has been focused on the latter. The

two common ways of estimating the cost of debt are to use the promised yield or the riskless rate. Both

yield biased results, and the errors can be material. Other estimation methods, such as using the CAPM

or adjusting the promised yield for the expected frequency of default, are hard to implement.

This paper proposes a practical way of estimating the true cost of debt. This involves splitting the

promised yield spread into the part due to expected default and the part which is an expected return

premium. The inputs required are the standard inputs to the WACC and the volatility of equity, all of

which are easily observable. The proposed method uses these inputs to impute the parameters of the Merton

risky debt model and to compute the expected return on debt. The idea is that, although the Merton model

is a stylised version of real debt structures, it should pick up the ¯rst order e®ects that are relevant to the

cost of debt. Thus it can be used to estimate the expected return relative to the promised yield.

The cost of debt is analysed for parameter values that are typical for a ¯rm with high grade debt and a

¯rm with low grade debt. In the high grade case, most of the promised yield spread is an expected return

premium. In contrast, for a high leverage ¯rm with low grade debt, most of the promised yield spread is

expected default. The standard approach of using the promised yield as the cost of debt may be adequate

for ¯rms with high grade debt. For ¯rms with low grade debt, it is likely to cause signi¯cant errors. In

these cases the approach proposed in this paper can be used to adjust the WACC for the probability of

default on the ¯rm's debt.
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Appendix 1: The Merton Model

The standard form of the Merton model is:

E = V N(d1)¡ Fe¡rTN(d2) (A1.1)

d1 = [ln(V=F ) + (r + ¾2=2)T ]=¾
p
T (A1.2)

d2 = d1 ¡ ¾
p
T (A1.3)

B = V ¡E (A1.4)

where V is the value of the assets of the ¯rm, E is the value of the equity, B is the value of the debt and F

is the promised debt payment. The other variables are as in the main text.

The continuously compounded promised yield on debt is de¯ned by:

yD =
1

T
ln[F=B] (A1.5)

The continuously compounded spread is de¯ned by:

sD = yD ¡ r (A1.6)

Substitution of (A1.4)-(A1.6) in (A1.1)-(A1.3) gives equations (4)-(6) of the main text.
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Appendix 2: Derivation of the Expected Return on Debt

It follows from (3) that the asset returns are log-normally distributed:

ln(VT =V ) » N
³
(¹¡ ¾2=2)T; ¾2T

´
(A2.1)

where VT is the value of the ¯rm's assets at date T . Therefore,

VT = V e
¹T+¾

p
TZ (A2.2)

where Z is a standard normal variable.

The face value F of the debt is

F = (1¡ pE)V eyDT = (1¡ pE)V e(sD+r)T (A2.3)

With the assumptions of the Merton model, the compound return on debt over T is determined by:

(1¡ pE)V erDT =
VT=FZ
¡1

VT dN(Z) +

1Z
VT=F

F dN(Z) (A2.4)

Evaluating the integrals, we obtain:

(1¡ pE)V erDT = V e¹TN(¡K1) + F N(K2) (A2.5)

where F is given by (A2.3) and:

K1 =
£
ln
£
e¹T =F

¤
+ ¾2T=2

¤
=¾
p
T (A2.6)

K2 = K1 ¡ ¾
p
T (A2.7)

Rearranging terms in (A2.5) and noting that (see (5), (6) and (8)):

K1 = d1 + (¹¡ r)
p
T=¾ = d1 + ¼E

p
T=¾E (A2.8)
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K2 = d2 + (¹¡ r)
p
T=¾ = d2 + ¼E

p
T=¾E (A2.9)

we obtain Equation (10) of the main text.
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Table 1: The Relationship between the Proportion of the Promised Yield

Spread that is a Risk Premium, and the WACC

Proportion of promised debt Debt Risk True Cost True

yield spread that is a risk premium Premium of Debt WACC

1.00 4% 7% 7.6%

0.75 3% 6% 6.9%

0.50 2% 5% 6.2%

0.25 1% 4% 5.5%

0.00 0% 3% 4.8%

In this example, the real riskless rate is 3%, the promised yield on debt is 7%, the proportion of equity is 30%, and

the equity risk premium is 6%.
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Table 2: The relationship between promised yield and the expected excess

return on debt

pE sD (%) ¼E (%) ¾E rD ¡ r (%) ® (%)

Panel A: Typical high grade debt ¯rm

0.7 1.0 6.0 0.3 0.84 83.6

0.6 0.81 81.3

0.8 0.87 86.6

0.5 0.41 81.0

1.5 1.28 85.5

5.0 0.77 76.6

7.0 0.89 88.9

0.2 NA NA

0.4 0.58 58.5

Panel B: High leverage ¯rm

0.3 4.0 6.0 0.5 1.52 38.1

0.2 1.48 37.1

0.4 1.56 39.1

3.0 1.12 37.3

5.0 1.93 38.7

5.0 1.30 32.5

7.0 1.73 43.3

0.4 2.27 56.7

0.6 1.08 27.0
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The table shows the relationship between promised yields and expected returns on debt from the Merton model.

The inputs are the proportion of equity, pE , the promised spread on debt, sD, the volatility of equity, ¾E; and the

equity risk premium, ¼E: The outputs are the expected return premium on debt, rD ¡ r, and the proportion of the

promised debt spread that represents an expected return premium, ® = (rD ¡ r)=sD. NA means that there was no

solution was found that gave these values.
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