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Abstract

This paper addresses an issue central to the estimation of discount rates for
capital budgeting: should the geometric mean or arithmetic mean of past data
be used when estimating the discount rate? The use of the arithmetic mean
ignores estimation error and serial correlation in returns. Unbiased discount
factors have been derived that correct for both these effects. In all cases, the
corrected discount rates are closer to the arithmetic than the geometric mean.
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1. Introduction

In estimating the cost of capital using the capital asset pricing model (CAPM),
the expected risk premium on the market plays a key role. This estimate is often
obtained by the analysis of historical returns on an equity market index. There
are two standard statistics used as the basis of this estimate: the arithmetic mean
of historical returns or risk premia and the geometric mean. To illustrate the
difference between these statistics, for the US during the period 1926-1992 the
arithmetic mean real return on the equity market was 9.0%, whereas the
geometric mean was 7.0% [SBBI (1993)]. For the UK in the period 1919-1994
the arithmetic real return was 10.3% whereas the geometric mean was 7.7%
[BZW (1995)].

Standard references on estimating the expected return on the market differ in
their advocacy of the arithmetic or geometric mean as the basis of discount rates
for capital budgeting. Among the advocates of the arithmetic mean are Bodie er
al. (1989), Brealey and Myers (1991a,b), Franks er al. (1985), Kolbe et al. (1984)

*I am grateful to Dick Brealey, Michael Brennan and Julian Franks for helpful
discussions.
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and Ross and Westerfield (1988). Advocacy of the geometric mean is found in
Copeland et al. (1991) and Levy and Sarnat (1986). The large difference between
the two statistics means that the choice of one or the other may have a dramatic
effect on the valuation of any asset with other than a short life.

A reason for favouring the arithmetic mean is given in Kolbe et al. (1984):

Note that the arithmetic mean, not the geometric mean, is the relevant value for this
purpose. The quantity desired is the rate of return that investors expect over the next
year for the random annual rate of return on the market. The arithmetic mean, or
simple average, is the unbiased measure of the expected value of repeated observa-
tions of a random variable, not the geometric mean. ...the geometric mean
underestimates the expected annual rate of return.

The key point of this argument is that unbiasedness is considered to be the
relevant criterion. Butler and Schachter (1989) show, however, that care must be
taken to decide what unbiasedness criterion one uses. In particular, even though
the arithmetic average of annual returns may be an unbiased estimate of the
expected return over the next year, it is not an unbiased estimate of the expected
return over periods greater than one year or of the discount factor, which is the
reciprocal of the expected return.

Apart from capital budgeting, the estimate of the market risk-premium is
central to the regulation of privatised utilities. Allowable returns are set using
the CAPM in various countries and the choice of the market risk-premium has
a significant effect. For instance, the ultimate arbiter of regulated utilities in the
UK, the Monopolies and Mergers Commission, is confused about the choice of
arithmetic or geometric averages [MMC (1995)]:

Under the CAPM approach to assessing the cost of capital, the WACC depends
on...the premium required by equity holders to compensate for risk. ... Estimates
of these factors cannot be precise, depending as they do on the period over which
returns are calculated, whether average or geometric returns are calculated.

Thus major regulatory decisions are taken in the UK on the basis that arithmetic
and geometric means of past returns have similar merit in setting expected
future returns.

The purpose of this paper is to derive unbiased estimates of discount factors
for use in capital budgeting. The paper is organised as follows. Section 2 shows
the conditions for the arithmetic mean of past returns or risk premia to be the
correct estimator for use in discounting. Section 3 explains the problems with
this argument. Section 4 derives unbiased estimators for discount factors when
returns are not serially correlated. Numerical examples are given in Section 5. In
Section 6 the implications of the ‘excess volatility’ literature are discussed, and
Section 7 presents the conclusions of the paper.

2. Basic theory

In capital budgeting expected future cash flows are discounted. These expected
cash flows are the arithmetic means of possible cash flow outcomes. The capital
asset pricing model is also formally stated in terms of arithmetic expected
returns over an unspecified investment horizon. A typical use of the CAPM
assumes that the expected return over one year is estimated. If the cash flow to
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be received occurs after N years, then this expected return is compounded over
N years to give the reciprocal of the discount factor.

Thus, if the cash flow to be received after N years is X, then the present value
is typically estimated as:

V=EX)m " (1)

where E(.) is the expectations operator and m is an estimate of the one year
expected return appropriate to the risk of the investment.

The theory that motivates this is the following. Suppose that the return over
the next year will be R;;, with a known arithmetic expectation of E(Rr,)=M.
Suppose now that we need the expected value of the future N-year return:
E(R7.\Rr.s... Ry, y). If each return is independent with the same mean, this is
equal to M™. The expected return on the investment project is (E(X)/V) and the
expected return on an equivalent capital market investment is M". So the correct
value of the project is V'=FE(X)M " where M is the true arithmetic mean one-
period return. Thus, if M is known the normal discounting formula correctly
compounds M to give the n-period arithmetic expected return for use in
discounting.

This argument is based on three assumptions:

A. The arithmetic expected return each period is constant.
B. Returns are serially independent.
C. The expected return is known.

The first of these assumptions can be modified to allow for changing interest
rates and stated in the form of a constant risk premium. The second is based
loosely on market efficiency, and corresponds to the assumption that the market
is weak-form efficient with a constant expected return or risk premium. The
third is untrue in most applications as the expected return is estimated with
error. In general, the true mean (M) of the distribution of R is not known, and
an estimate (m) is used based upon a statistic such as the arithmetic or
geometric mean of past returns.

3. Problems with estimates of the expected return

To investigate the properties of the arithmetic mean and geometric mean of past
returns as estimators of the discount rate, we assume that annual total return
wealth relatives on the index over the past T years of Ry, R,,... Ry have been
observed. Then the arithmetic mean return is defined as:

A=Y RJT (2)

i

and the geometric mean is defined as:

ur
G{H R..] 3)

For instance, the arithmetic mean real rate of return on US equities in the
period 1926-1992 was 9.0%. The geometric mean real rate of return for the
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same period was 7.0%." A similar difference arises if one uses arithmetic or
geometric average estimates of the risk premium.

There are three possible problems with the use of the arithmetic mean or
geometric mean as estimates of the true expected return. These correspond to
the three assumptions listed in Section 2 above. The first is that the expected
return or the expected risk-premium may not be constant. The second problem
Is that returns in successive periods may not be independent. The third problem
is that the true mean of the returns is not known. Instead an estimate based on
either the geometric or the arithmetic mean of past returns is used instead of the
true mean. The first two of these problems are discussed in Section 6 below. For
the rest of this section and Sections 4 and 5 we assume that the expected real
return is constant and returns are independent.”

Even if returns are serially independent, the arithmetic mean, A, is only an
estimate of the true mean return, M. Any estimation error is, therefore
compounded when the transform 4" is used as an estimate of M ", To see this,
assume that the cash flow to be discounted has expectation E(X') and a beta of
unity. Then the correct present value of the cash flow is M "E(X). Suppose that
we estimate the discount factor M " with some estimator My. For an unbiased
estimate of the value we need:

EMy)=M" (4)

Note that neither of the estimators 4~ or G " has this property. Blume (1974)
shows that the arithmetic mean, A, is an unbiased estimate of the true expecta-
tion M, and the compounded geometric mean G’ is an unbiased estimate of the
compounded wealth relative M'. Thus 4" and G ", which are non-linear func-

tions of A and G' respectively, are biased estimates of M "
The direction of the biases in 4 " and G " as estimators of M " can be seen
from the convexity of the functions 4" and (G") ", Using Jensen's inequality:
E(AM)>[EA)) V=M N=>1 (5)

Similarly:

E(G M) =E[(G") ">[EGN ™M =M")" =M™ T>N (6)
Thus both A" and G " are upward biased estimators of the correct discount
factor M~". As a consequence, both the arithmetic mean 4 and the geometric
mean ( are downward biased estimators of the discount rate that should be

used to discount cash flows with a beta of unity. As the geometric mean is always
below the arithmetic mean, it is always the more biased of the two estimates.

"Throughout the paper the word ‘return’ is used to refer to a wealth relative, so that a
rate of return of 10% corresponds to a ‘return’ or wealth relative of 1.1.

*Although the assumption of a constant expected real return is not equivalent to the
assumption of a constant risk-premium, the statistical arguments are essentially the same
in both cases. Inclusion of a time-varying real interest rate would, therefore, add
complexity to the argument without affecting the substance of the question of whether
arithmetic or geometric averaging of past data (returns of risk-premiums) is the appro-
priate estimation procedure.
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4. Unbiased estimation of discount factors with constant mean returns

This estimation error problem is partially addressed by Blume (1974). He
provides a way of using the geometric mean and the arithmetic mean of past
returns to form an unbiased estimate of the expected return over any future
period. The procedure he proposes is that the expected return over a horizon of
N periods should be formed by a weighted average of the compounded
geometric and arithmetic means G" and A". He shows that this is an
approximately unbiased estimate of M", the true expected return over N periods.
Note, however, that it will not provide an unbiased estimate of M ", the
discount factor which is a non-linear function of the expected return, My.

Blume proposes two alternative nearly unbiased estimators of the N-period
expected return, the ‘weighted unbiased” and the ‘adjusted unbiased’. He prefers
the former, which is defined as:

MW=RAN+(1—(J)GN (7)

where a=(T—N)/(T—1) which forms a weighted average of A" and G". When
N=1, all the weight is on the arithmetic mean. When N=T, all the weight is on
the geometric mean. As N drops from T to one, more and more weight is given
to the arithmetic and less and less weight is given to the geometric mean. Thus,
the arithmetic mean is an unbiased estimate of the short-term expected return
and the compounded geometric mean an unbiased estimate of the long-term
expected return. This is reasonable as one may think of the compounded
geometric mean as simply the arithmetic mean over the period of length 7.

This procedure leads to an approximately unbiased estimate of the expected
return over N periods M". In capital budgeting, however, we need an unbiased
estimator of the discount factor M~". The Appendix demonstrates, using analysis
similar to Blume, that an approximately unbiased estimator of M " is given by:

Dyy=bA""+(Q-b)G™* (8)

where b=(N+T)/(T—1).

Note that, whereas, the Blume estimator of the expected return given by (7)
lies between 4" and G", the unbiased estimator of the discount factor lies
outside the range of A" and G ". Note also that, when N=7, the Blume
estimator is simply the compound geometric mean G", whereas the estimator
Dy, is approximately (24 ¥ —G ).

The estimation problem is simplified if we are prepared to specify the distribu-
tion of rates of return. If we assume that the distribution of returns is lognormal
then:

InR~N(u,s) (9)
The expected return is given by:
E(R)=exp (pu+s/2)=M (10)
The ‘true’ discount factor for N periods is given by:
M~ =exp (—Nu—Ns*/2) (11)

If the variance is constant we can get an arbitrarily good estimate of s* from a
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finite time series by chopping into arbitrarily fine intervals, so we assume hence-
forth that s is known.
The logarithm of the geometric mean, G, is distributed:

InG~N(u,s%T) (12)
Thus:
In (G ™)~N(—Npu, N’s*/T) (13)
So:
E(G™)=M " exp [(T+N)Ns*/2T] (14)
Thus an unbiased estimate of M " based on the geometric mean is given by:*
Duw;=G Y exp[—(T+N)Ns*2T] (15)

Alternatively, if the empirical distribution on which 4 and G are based is
lognormal, then:

A=G exp (s7/2) (16)
A N=G Vexp(—Ns'2) (17)

So we can form an unbiased estimator based on the arithmetic mean by:
Dys=A"" exp [—N**/2T) (18)

We have now derived three unbiased estimators of the discount factor for N
periods, M~". The first Dy, is a function of both the arithmetic and geometric
means and the other two, Dy, and Dy are functions of the geometric and
arithmetic means respectively.

The properties of these three estimators are examined in the next section.

5. Numerical examples

Numerical examples of the three estimators are given in Table 1 for values of G,
A and s° computed for real returns on the returns to the US stock market over
the period 1926-1992." The results for the UK would be very similar, as the
returns series have similar properties. Indeed, the qualitative results would verti-
cally identical.

Tables 1 and 2 show, for various horizons N, the unbiased discount factors
converted to rates of return (Panel A) and annuity rates (Panel B). The three
unbiased estimators are very similar and are, in all cases, much closer to the
arithmetic mean return of 9.0% than the geometric mean of 7.0%. Indeed, for
horizons of up to ten years, the unbiased discount rates are within 0.4% of the
arithmetic mean and the annuity factors are within 0.6% of the arithmetic mean
for all periods up to 30 years. Thus, although the arithmetic mean is biased, the
bias is small for most practical applications and correcting this bias moves the
estimator further away from the geometric mean.

*This cause of bias was first pointed out by Butler and Schachter (1989). They propose a
correction to the estimate of the discount rate based upon a Taylor series expansion.
*The source of the returns is the SBBI (1993) Yearbook.
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6. Serially correlated returns

An assumption of the above analysis is the serial independence of returns. A
series of recent papers finds, however, that returns in equity markets are not
serially independent. This is interpreted by some as meaning that markets are
not efficient, and by others as meaning that the risk premium varies over time.
The evidence on this point is not conclusive.’

If this evidence is interpreted as demonstrating time variation in risk-
premiums it raises very complex questions about cost of capital estimation, which

Table 1

Approximately unbiased estimates of real discount rates for a unit beta investment
assuming constant mean real returns.

N is the horizon in years. Dy, is an estimate of the discount factor based on a weighted
average of G " and A" given by equation (8) in the text. G is the annual geometric
mean real return over the period 1926-1992 and is equal to 1.0698. A is the annual
arithmetic mean real return over the same period and is equal to 1.0904. dy, is the
annual discount rate equwa]ent to Dy,. Dy, is an estimate of the discount factor based
on a lognormal distribution given by equatlon (15) in the text. dw is the annual discount
rate equivalent to Dy, Dy, is similarly given by (18) and dy: is the corresponding
discount rate. The estimated standard deviation of the annual log real return is 0.1991,
based on annual data

Panel A Discount rates.

N dy, (%) dys (%) dys (%)
1 9.1 9.2 9.1
2 9.1 9.2 9.1
3 9.2 9.2 9.1
4 9.2 9.2 9.2
5 9.2 93 9.2

10 9.4 94 9.3

15 9.6 9.6 9.5

20 9.9 9.7 9.7

25 10.2 9.9 9.8

30 10.6 10.0 10.0

Panel B Real annuity rates equivalent to the discount rates in Panel A (dy is the
annuity rate corresponding to the unbiased annuity factor given by Dy,.

N dy ({'7() d.-\': (%) dna (%)
5 9.2 9.2 9.2
10 9.3 93 9.2
15 9.4 9.4 9.3
20 9.5 9.5 9.4
25 9.6 9.5 9.4
30 9.7 9.6 9.5

*A comprehensive discussion can be found in Kleidon (1986).
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Table 2
Approximately unbiased estimates of discount rates for the index assuming returns are
independent over different intervals,
The variance ratios are from Poterba and Summers (1988) Table 4. Dy, is the estimator
of the N period discount factor given by (19), and dy, is the corresponding discount rate.
The figures along the top are the differencing intervals applied to the data to compute
the variance ratios.

Interval (years) 1 2 3 4 5 6 7 8
Variance ratio 1000 0814 0653  0.656  0.696  0.804  0.803  0.800
diy (%) 9.2 8.8 8.4 8.4 8.5 8.7 8.7 8.7
dyys (%) 9.5 9.0) 8.6 8.6 8.7 9.0 9.0 9.0
dy g (90) 10.1 9.5 9.0) 9.0 0.2 0.5 9.5 95

have not been addressed in the literature. Required rates of return at any date
would have to be estimated conditional on the set of variables that predict the
risk-premium using the appropriate model. Similar issues to those addressed in
this paper would then arise in terms of using the estimated parameters of the
model to form estimates of the discount factors.

If, on the other hand, serial correlation is caused by transient disequilibrium
we can see the likely size of the effect on discount rates if we maintain- the
assumption that returns are lognormally distributed, but allow for the fact that
the variance of the distribution of returns changes as the horizon alters. Suppose
that we use n-period differencing intervals for the data and maintain the assump-
tion that n-period returns are independent and lognormal. Denoting the
n-period return by R, and the n-period geometric mean by G, we assume:

In R, ~N(,,s)
and derive;
In G, ~N(p,, s;/(Tin))

Then we can form an unbiased estimator of the N-period discount rate similar to
that given by (15):

ﬁ.w =G exp | —[(T/n) +(N/n)|(N/n )Sﬁ!(?.T/n )] (19)
Using the fact that G Y =G, " gives:
Dyi=G exp [ —(T+N)IN(siin)2T] (20)

Thus the estimator is the same as Dy, except that the estimated variance of the
annual log return is given by (S3/N), which is the annualised n-period variance.
If the differencing interval is long enough to make the n-period returns serially
independent, then this estimator climinates transient effects in prices when
constructing the discount rate.

In their study of mean reversion in stock prices, Poterba and Summers (1988)
give estimates of the variance ratio [(s;/n)/s’|. These are shown in Table 2 for
values of n up to eight years. Corresponding cstimates of the discount rates for
different horizons are also given. These are based on the estimator Dy, given in
equation (20) computed for the relevant differencing interval (shown at the top
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of the table) and horizon. The estimates are shown as annual percentage
discount rates. Thus the final column shows that using data differenced by eight
years gives an annualised return variance equal to 80% of that computed usually
annually differenced data. The discount rate equivalent to an unbiased discount
factor for a one year horizon is then 8.7%, compared with the arithmetic mean
of annual returns of 9% and the geometric mean annual returns of 7%.

These estimates are generally much closer to the arithmetic mean of past
annual returns rather than the geometric mean. The attenuation of the variance
to allow for ‘overreaction’ in share prices over short horizons does not result in
estimates close to the geometric mean return. Indeed, it can be seen from
equation (20) above that the condition for the geometric mean to be an
unbiased discount rate is that (s;/n)=0. Even if equity markets overreact, the
limit of (s;/n) as n gets large will not be zero. From the Poterba and Summers
results, this limit looks to be about 80% of the one year variance, indicating that
the geometric mean is a significantly downward biased estimate of discount rates
even when ‘market overreaction’ is taken into account.

7. Summary and conclusions

This paper has addressed an issue central to the estimation of discount rates for
capital budgeting: should the geometric mean or arithmetic mean of past data be
used when estimating the discount rate? The use of the arithmetic mean ignores
estimation error and serial correlation in returns. Unbiased discount factors have
been derived that correct for both these effects. In all cases, the corrected
discount rates are closer to the arithmetic than the geometric mean.

It may be that the correct model of returns is more complex than that
analysed here. If so, then estimation of discount rates would involve more
complicated analysis than looking at the means of past returns. Some progress in
this direction has been made by Brennan (1993). It may also be that a more
complex criterion than unbiasedness is correct. Past average returns are,
however, the most commonly cited statistics in estimating the market risk
premium, so an understanding of the relative properties of geometric and arith-
metic means as estimators is essential until a more sophisticated procedure is
adopted.
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Appendix: An approximately unbiased discount rate with constant mean returns
We derive an approximation to A" as follows:
R,=M +e,
T
A=M+3 e/T=M+h

=1

A N=(M+h)N
E(A™)y=EM "1 +h/M)™")

Expanding (1+h/M)~" as a Taylor series and keeping only terms of order 4* or
less:

E(A "y~M " E(1—Nh/M+ (N +1)Nh*2M?)
Let var (¢) =¢", then:
E(W)y=d’T
E(h)=0
E(A") =M "1 +(N+1)K) (A1)

where:

K=No"/2TM*
Similarly, an approximation to G " is given by:

G=[ﬁ (M+e,)]fr

f=1

i
GN=T] (M+e)™
t=1

.
E(G™")y=M"E [ﬂ (1 +e,fM)—"’-"’]
t=1
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Expanding (1+e¢,/M) """ as a Taylor series and keeping only terms of ¢ or less:
P P

T
E(G)~M~"E [n (1—Ne,/TM +((N/T +1 )Nes/zrm]

=1

Using the independence of ¢,, and ¢.:

Vi T
=M E [1 ~NY e/TM+(N/T+1)N Y, ef/2TM:]
f=I =1

Using:
E(e})=0" and E(e)=0
E(G ™) =M 1 +(N/T+1)+NTa*2TM*)=M "(1 +(T+N)K) (A2)
Using (A1) and (A2) gives:
EMGA " +(1-b)G ™My =M"
where:

b=(N+T)(T—1)
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