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Abstract

Modern interest in business cycles has focussed on the co-movements and correlations in the
major macroeconomic aggregates. In this paper we o3er another dimension to business cycle
analysis which looks at the time series of cross-sectional distributions of the growth rates of
sales by US quoted companies from 1950 to 1999. We detect correlations between aggregate
business cycle 7uctuations and the higher moments of the cross-sectional distribution. We 8nd a
signi8cant negative correlation between the rate of growth of gdp and the cross-sectional variance
and skewness of growth rates of sales. On the other hand there is positive correlation, at business
cycle frequencies with kurtosis. In order to explore this further we turn to the dynamic evolution
of 8rms and analyse the sensitivity of growth rates to aggregate shocks conditioning on 8rm size.
The results suggest that despite considerable heterogeneity macroeconomic shocks have pervasive
e3ects that are, however, more pronounced for 8rms in the middle range of growth. This has im-
plications for both macro and industrial economics. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Modern approaches to the analysis of business cycles focus on co-movements and
correlations among the major macroeconomic aggregates. Until recently the cross-
sectional behaviour of individual 8rms or households was not considered important for
understanding the aggregate, or else there was insu?cient data. This has changed over
the last decade. Not only is there an increasing availability of highly disaggregated, lon-
gitudinal microeconomic and sectorial data for su?ciently long periods of time, but it
has been argued that particular forms of microeconomic adjustment—in particular when
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they are lumpy—can mean that the higher moments of the cross-sectional distribution
of microeconomic actions can a3ect the dynamics of macroeconomic aggregates.
This has been put most forcefully by Haltiwanger (1997). 1

It is becoming increasingly apparent that changes in the key macroaggregates at
cyclical and secular frequencies are best understood by tracking the evolution of
the cross-sectional distribution of activity and changes at the micro level.

The proper understanding of business cycles requires knowledge of the cross-sectional
distributions as well as the behaviour of aggregate economic variables over time.
Caballero (1992), Caballero and Engel (1992,1993) and Haltiwanger (1993) have sug-
gested that statistical agencies should report the higher moments of economic activity;
for example, the distribution of aggregate output. 2

In this paper we provide some new empirical evidence on the US business
cycle since 1950 that uses information on 8rm level sales obtained from the
COMPUSTAT database of quoted company accounts. We use a mixture of parametric
and non-parametric methods in order to explore the relationship between aggregate
business cycle 7uctuations and the cross-sectional distribution of 8rm sales growth. In
the standard models used in macroeconomics, the mean behaviour of 8rms subject to
idiosyncratic and aggregate shocks should be correlated with the aggregate economy
but the higher moments ought to be independent. However, we 8nd a distinct cyclical
pattern to the higher moments of the cross-sectional distribution of 8rm growth rates.
We 8nd that cross-section of 8rm growth rates exhibit signi8cant degrees of skewness
and kurtosis that varies with the business cycle. Moreover, the dispersion of growth
rates also varies over time in a secular fashion. These preliminary empirical 8ndings
are reported in Section 3.
The co-movements and persistence in aggregate measures that are the usual concern

of macroeconomists, may need to be augmented with these new stylised facts from the
cross-section. There is a need for theories that can explain not just the persistence of
the business cycle and the comovements in output, consumption, hours, employment
and investment, but also why the distribution of 8rm behaviour changes markedly over
the cycle, and how that can matter in determining the amplitude of the cycle and the
real economic processes of job generation and destruction.
The rest of the paper is organised as follows. A framework that organises our em-

pirical analysis is presented in Section 2. The stylised facts about the dynamics of the
cross-sectional distribution of growth rates are reported in Section 3. In Sections 4 and
5 we become more speci8c and apply the framework of Section 2 to discriminate be-
tween competing hypotheses about what drives the cross-sectional distribution of 8rm
growth over the business cycle. Section 6 concludes.

1 McGuckin (1995) has made similar points.
2 Hildenbrand (1998) has argued that we may not need an explicit model of individual behaviour if we

are interested in the aggregate activity of a large and heterogeneous group of economic agents. He examines
the cross-sectional distribution of household incomes in the UK and while they are not time invariant, the
distributions change only slowly over time.



C. Higson et al. / Journal of Economic Dynamics & Control 26 (2002) 1539–1555 1541

2. Cross-sectional heterogeneity in �rm growth

Here we present a simple framework to analyse the cross-sectional heterogeneity in
8rm growth rates. Consider a population of 8rms with the ith 8rm producing output
according to some standard production function:

yit = f(Ait ; Kit ; Lit); (1)

with y the output=sales, A the level of technical e?ciency, and K and L inputs of
capital and labour. We assume that the 8rm is subjected to a variety of shocks both
real and nominal: some, idiosyncratic, some, industry speci8c and some, economy wide.
So the total shock experienced in period t by the ith 8rm is


it = 
it + �jt + 
t ; (2)

with 
it the 8rm speci8c shock, �jt the jth industry shock and 
t the economy wide
disturbance. While idiosyncratic and industry speci8c shocks are not likely to have
obvious cyclical patterns, aggregate shocks, 3 whether real or nominal, can be expected
to be at the business cycle frequencies.
The growth rate of the individual 8rm about its mean can be thought of as made

up of 8rm speci8c responses to shocks:

git = Mgit + 
it + �it�jt + �i
t : (3)

For the ith 8rm, in period t, �i is its response to the aggregate shock, and �it , its
response to industry shocks. In any period, the set of shocks and 8rm level responses
generate the probability distribution of 8rm growth rates. Denote this by ht(g). Our
primary interest is in characterising and exploring patterns in ht(g) over time and how
it might vary with the business cycle. 4

We consider two ways in which 8rm speci8c responses to shocks could be char-
acterised. One possibility is that aggregate shocks modify the systematic relationship
between the growth of the 8rm and its characteristics. Such changes (in the systematic
component of 8rm growth) may drive the cross-sectional distribution of growth rates
over the business cycle. For example, following up the attention paid to the growth-size
relationship in the industrial economics literature on 8rm growth, we could usefully
ask whether large 8rms grow faster than small 8rms in recoveries, and if the converse
was true in recessions. Are cycle related changes in the growth-size relationship (com-
bined with changes in the size distribution itself) the main driving forces behind the
evolution of cross-sections over time?
The other possibility is that growth responses of 8rms at business cycle frequencies

do not have as much to do with features such as 8rm size, but are better explained by
the di3erential impact of aggregate shocks across the population of 8rms. Suppose that
all 8rms were a3ected in the same way by an aggregate shock (so �i:= �, for all i).

3 We are being deliberately agnostic about what the aggregate shocks might be.
4 See also Adadir and Talmain (2000). �it can be thought akin to the � of the corporate 8nance literature.

As a 8rst approximation we can assume that each 8rm responds in the same way to the industry level shock.
Although in this paper we do not condition on industry, results for the UK reported in Higson et al. (2001)
show that including an industry dummy does not alter the results.
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In this case the cross-sectional distribution would experience a spread preserving shift
in the mean of the distribution. To the extent to which 8rms are di3erentially a3ected
by an aggregate shock, we would expect that the higher moments of the distribution
to alter at business cycle frequencies. It is a commonplace of the 8nance literature that
some types of 8rm are cyclical and others not.
In formal terms, denote variables relevant to the growth rate of the 8rm by Zt (a

key element of which is 8rm size, st), and the probability distribution of growth rates
conditional on Zt by ht(g|Zt). 5 If the way 8rm growth rates, git , depend on 8rm
speci8c features is represented by ft(Zt), observed growth rates of 8rms are given by
E(ft(Zt) + ]t) where ]t is that portion of the growth rate that cannot be ascribed to
any systematic 8rm speci8c in7uence. Denote the distribution of �t by lt(�t).

The dynamics of the cross-section of growth rates, ht(g), depends on changes in
ht(g|Zt), and changes in the distribution of Zt (mt(Zt)) across the population of 8rms. 6

The conditional distribution ht(g|Zt), is comprised of the conditional mean growth,
ft(Zt), and the residual, lt(�t |Zt). The relative importance of these two components
as they evolve over the cycle will indicate the balance of evidence between our two
hypotheses.
In this paper, we specialise Zt to 8rm size, st , limiting consideration to a single key

determinant of 8rm growth found in the literature. 7 In those terms, the moments of
cross-sectional distribution of growth rates are driven by, on the one hand, changes in
the growth-size relationship, f̂t(st)

8 and on the other by the distribution of the distur-
bance, lt(�t). If the cross-sectional dynamics of the growth rate distribution is driven
by aggregate shocks changing the growth-size relationship, we would expect to see
the growth-size relationship change over the business cycle. By examining changes in
f̂t(st) we can draw inferences on whether, for example, small 8rms grow faster relative
to large in recoveries, and large 8rms contract less relative to small in recessions. If
these kinds of changes are the major driving force, f̂t(st) will dominate ht(g). If on
the other hand, the in7uence of aggregate shocks on the growth of 8rms is independent
of size we would expect lt(�t) to dominate ht(g).

3. Empirical evidence for the US

In this section we turn to an examination of some cross-sectional evidence on the
US postwar economy using the COMPUSTAT database of quoted 8rm accounts for

5 This may pertain to surviving 8rms or may include entering and exiting 8rms. In the latter case, it would
be convenient to de8ne the growth rate as (sit − sit−1)=[(sit + sit−1)=2]. This de8nition of growth rate has
the advantage of symmetry in expansion and contraction as well as in entry (growth rate of 200% and exit,
growth rate of −200%). Continuous growth rates lie in the interval [− 100%;∞].

6 In turn, mt(Zt) is determined by ft(Zt).
7 The large segment of empirical literature aimed at explaining 8rm growth have used a simple growth-size

relationship that is generally named Gibrat’s law (Gibrat, 1931) as the point of departure. This literature is
reviewed in Sutton (1997).

8 Which does depend on how mt(st) changes over time.
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Fig. 1. Kernel density contours of US sales growth.

1950–1999. We have adopted the following procedures:

1. For all 8rms that are on the database we have extracted gross nominal sales. No
8ltering according to industry was used.

2. All sales were de7ated by the gdp chained de7ator and logarithmic changes com-
puted and multiplied by 100.

3. A cut-o3 of ±25 percent growth rate was then used to truncate the data and exclude
outliers. 9

4. Continuous growth rates were computed for the largest third of 8rms, for the
smallest third of 8rms and the third in the middle.

5. The moments of the cross-sectional distributions of growth rates in each year were
computed.

Fig. 1 provides a visual representation of the cross-sections of all 8rms for 1951–
1999. It is a contour map of the kernel densities 8tted to yearly cross-sections of
continuous growth rates. The density estimates of the cross-sectional distribution of
real growth rates were generated with a Gaussian kernel and an automatic, Silver-
man bandwidth. These non-parametric estimates of the cross-sectional distributions
should be regarded as largely impressionistic. Nevertheless, they do suggest some
interesting features of the evolution of cross-sectional growth rates in the postwar

9 Alternative cut-o3s ranging to ±100% did not change results. We have not explicitly addressed the issue
of internal growth as against growth via mergers.
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period. Because the average growth rate of the US economy was positive in the postwar
period, the central mass of the distribution lies to the right of zero. There is considerable
dispersion in performance re7ecting a considerable amount of churning at the sectorial
and individual 8rm level. The central mass also moves with the aggregate growth rate
of the macroeconomy. What is also striking is that these 7uctuations in the mean are
associated with contortions in the whole cross-sectional distribution. This shows up
clearly in the contour map of Fig. 1. This picture suggests that there are signi8cant
deviations from normality and that these deviations are associated with the aggregate
business cycle. 10

In Fig. 2 we have plotted the moments of the growth rates cross-sections against
the annual rate of growth of gdp (shown as a bar in the plot). There is a close
visual correspondence between the mean and median of the cross-sections and the
aggregate economy. The standard deviation appears to have an upward trend, at least
until the 1970s and skewness seems to be counter-cyclical. Excess kurtosis appears to
be positively correlated with the business cycle but also there is an indication of a
break in the shape of the distribution in the mid-1970s. Whereas in the 8rst half of
the sample excess kurtosis is positive, it is negative in the second half of the sample.
In Table 1, we provide simple regressions of the cross-sectional moments on current

and lagged gdp growth rates. These regressions indicate considerable co-movement
and persistence in the cross-sectional moments and the aggregate growth rate of the
US economy. Both the standard deviation and skewness are negatively correlated with
the aggregate growth rate while kurtosis is positively correlated. The spread (standard
deviation) of the distribution narrows during upswings in the economy, but a negative
skewness is observed and there is an increase in kurtosis. In an economic downturn
the spread of performance widens, and a positive skewness is observed.
The use of unweighted growth rates means that we are treating all 8rms the same,

but there is enormous variation in the size of 8rms measured by sales. If aggregate
output is dominated by a few very large 8rms then the behaviour of smaller 8rms—
though of interest to industrial economists—may tell us little about the aggregate econ-
omy. In Tables 2–4 we show the relationship between the aggregate economy and the
cross-sectional moments when we divide the growth rates into three classes given by
the size of the 8rm in the previous year. We note that there is still a signi8cant rela-
tionship between the aggregate economy and the central moments calculated for large,
medium and small 8rms.
We can summarise our 8ndings so far as follows:

• There is considerable cross-sectional heterogeneity in the growth rates of US 8rms
which varies with the business cycle.

10 To establish whether these cross-sectional distributions represent signi8cant deviations from normality,
we used the Bowman and Shenton (1975) statistic to test whether the cross-sectional series is normally
distributed. The omnibus test statistic measures the di3erence of the skewness and kurtosis of the series with
those from the normal distribution. This is simply computed as N=6(sk2 + 1

4 (k − 3)2); sk is the skewness,
k is the kurtosis, and N the number of 8rms in each year. Where the statistic is distributed as a �2(2).
The omnibus tests suggested that there is signi8cant departures from normality for almost the whole of the
sample. Further details of these tests can be obtained from the authors.
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Fig. 2. Moments of truncated (−25;+25) cross sections: 1951–99 against GDP growth (BAR).

• The spread (standard deviation) of growth rates has an upward trend; it also appears
to have a counter-cyclical tendency; the distribution narrows in an upswing and
widens in a downturn.

• The skewness of growth rates is counter-cyclical. In recessions there is a positive
skew to the distribution; in upturns, a negative skew.
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Table 1
All 8rms. Sample: 1952–1999, OLS estimates. t-statistics below coe?cient estimates. LM(2) is a Lagrange
Multiplier test for serial correlation distributed as �2

Regression of cross-sectional moments on gdp growth

Mean Median SD Skewness Kurtosis

Constant −0:5207 −0:1834 18.1379 −0:0344 0.3882
−1:12 −0:38 2.46 −0:82 1.61

Lagged dependent 0.4301 0.3740 0.9100 0.2772 0.8056
Variable 3.29 2.85 15.33 2.04 9.33
ULn(gdp) 0.9443 0.9302 −3:6070 −0:0596 0.1260

11.33 11.03 −6:83 −7:82 8.23
ULn(gdpt−1) −0:1450 −0:0991 1.1965 0.0022 −0:0699

−1:06 −0:71 2.18 0.21 −3:98

R2 0.743 0.733 0.860 0.596 0.755
LM(2) 0.026 0.042 1.433 1.255 0.680

Table 2
Top third of 8rms by size in previous year. Sample: 1952–1999, OLS estimates. t-statistics below coe?cient
estimates. LM(2) is a Lagrange Multiplier test for serial correlation distributed as �2

Regression of cross-sectional moments on gdp growth

Mean Median SD Skewness Kurtosis

Constant −0:142 −0:0485 8.2164 −0:0239 0.3121
−0:83 −0:07 2.81 −0:99 2.69

Lagged dependent 0.3402 0.2919 0.8757 0.3027 0.6354
Variable 2.39 2.04 12.5 2.13 5.45
ULn(gdp) 0.3196 1.1559 −1:2848 −0:0196 0.0437

9.91 8.8 −5:99 −4:22 4.23
ULn(gdpt−1) −0:0311 −0:0595 0.2104 0.0007 −0:025

−0:6 −0:3 0.94 0.13 −2:23

R2 0.687 0.631 0.808 0.334 0.488
LM(2) 0.24 0.212 1.212 0.84 2.595

• Kurtosis is positively related to the cycle. In an upswing, the tendency for the
distribution of growth rates to narrow is also associated with more peakedness so
that there is more mass about the mean as well as the tails.

4. Systematic and stochastic growth of �rms over the business cycle

In the previous section we have identi8ed some stylised facts about the cross section
of growth rates. Now we turn to an examination of the data to decide between the
two mechanisms set out in Section 2 above, nesting them in a simple model of 8rm
growth. The standard approach to the cross-sectional growth-size relationship has been
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Table 3
Middle third of 8rms by size in previous year. Sample: 1952–1999, OLS estimates. t-statistics below coef-
8cient estimates. LM(2) is a Lagrange Multiplier test for serial correlation distributed as �2

Regression of cross-sectional moments on gdp growth

Mean Median SD Skewness Kurtosis

Constant −0:1921 −0:2808 6.9355 −0:0145 0.3217
−1:28 −0:59 2.33 −0:71 2.46

Lagged dependent 0.3932 0.3191 0.8664 0.3435 0.544
Variable 3.06 2.54 12.15 2.47 4.18
ULn(gdp) 0.3275 0.9768 −1:014 −0:0177 0.0492

11.8 11.41 −4:67 −4:59 4.75
ULn(gdpt−1) −0:0321 −0:0258 0.3612 0.0024 −0:0103

−0:7 −0:19 1.61 0.53 −0:94

R2 0.761 0.749 0.793 0.353 0.399
LM(2) 0.363 0.209 2.164 1.018 4.267

Table 4
Smallest third of 8rms by size in previous year. Sample: 1952–1999, OLS estimates. t-statistics below
coe?cient estimates. LM(2) is a Lagrange Multiplier test for serial correlation distributed as �2

Regression of cross-sectional moments on gdp growth

Mean Median SD Skewness Kurtosis

Constant −0:1687 −0:1679 6.6012 0.006 0.6032
−1:06 −0:35 2.35 0.3 4.75

Lagged dependent 0.5145 0.4472 0.894 0.1566 0.2553
Variable 4.17 3.54 13.09 1.14 1.81
ULn(gdp) 0.3173 0.9474 −1:3974 −0:0236 0.0348

10.92 11.15 −6:34 −6:04 3.54
ULn(gdpt−1) −0:0737 −0:1792 0.5553 −0:0018 −0:0018

−1:63 −1:29 2.43 −0:37 −0:17

R2 0.733 0.74 0.813 0.441 0.237
LM(2) 0.245 0.295 2.295 0.101 1.512

to estimate a 8rst order Galton–Markov model which generalises the Gibrat model to
allow past size to in7uence current size:

zit = �tzit−1 + 
it ; (4)

where zit is the deviation from the log of size of 8rm i at time t from the mean of
the logs of sizes of 8rms at time t; � is the size growth coe?cient and 
it is the
disturbance. Gibrat’s law holds if � is close enough to unity. A value of �¡ 1 would
suggest regression towards the mean with small 8rms, on average, growing faster than
large; a value of �¿ 1 would suggest that large 8rms, on average, grow faster than
small. Eq. (4) is then equivalent to

zit − zit−1 = (�t − 1)zit−1 + 
it : (5)
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Empirical work on direct tests of Gibrat’s law started in the 1950s and has generally
found that it serves as an approximation (Scherer, 1980; Hart and Oulton, 1995). But
earlier studies (Samuels, 1965; Singh and Whittington, 1968; Prais, 1976) found a
tendency for large 8rms to grow faster than small, while later studies (Kumar, 1985;
Acs and Audretsch, 1990; Hall, 1987; Evans, 1987a, b; Dunne et al., 1989; Dunne and
Hughes, 1994) found a tendency for small 8rms to grow faster. 11 In a time series
study, Geroski et al. (1997) established that growth patterns of UK 8rms are captured
by a random walk with a drift; growth rates are not persistent.
If there is no signi8cant serial correlation and if 
it is independent of zit−1, then the

variance of growth rates evolves according to

V (Uzit) = (�t − 1)2V (zit−1) + V (
it): (6)

The third central moment, which measures skewness evolves as

E(Uzit − MUzit)3 = (�t − 1)3E(zit−1 − Mzit−1)3 + E(
it − M
it)3: (7)

It is easy to see that the coe?cient of skewness, (7) normalised by the standard
deviation to be dimensionless, evolves as

sk(Uzit) = [(�t − 1)3sk(zit−1)!(zit−1)3 + sk(
it)!(
it)3]
1

!(Uzit)3
: (8)

We estimate the Galton process in (5) by OLS, for successive pairs of years using
data on 8rms that survive from one year to the next. The decompositions of the higher
moments of the growth rate distributions given by (6) and (8) are plotted in Figs. 3
and 4. The constant captures the linear e3ect of aggregate shocks.

11 In the UK studies have found standardised estimates of � in the range 0.77–1.12; Prais (1976), Dunne
and Hughes (1994), Hart and Oulton (2001).
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Fig. 5 shows the distinct ways in which Gibrat’s law is violated over the up and
down phases of the business cycle. 12 A regression of the estimated � on gdp growth
gave the following result.

�t = 0:1565 +0:3897�t−1 + 0:4509�t−2 + 0:09151ULn(gdpt);
(1:52) (4:03) (4:89) (4:59)

R2 = 0:663; LM(2) = 3:47: (9)

This suggests a pro-cyclical pattern to the � coe?cient, suggesting that in the ex-
pansion phase, smaller 8rms on average grow faster than large, while in a contraction,
this tendency is tempered in favour of large 8rms.
What is the force driving the upward drift of the cross-sectional dispersion of growth

rates? In the decomposition (6), the 8rst term on the r.h.s. represents a systematic
mechanism with two components that work together upon the dispersion of growth
rates: the relationship between growth and size works with the distribution of 8rm sizes.
Fig. 3 clearly shows that it is the variance of the purely idiosyncratic disturbance that
has driven the increasing in variance of growth rates. Empirical studies of 8rm growth
have established that growth rates of 8rms cannot be predicted well by size, or indeed,
other explanatory factors. What is suggested here is that the degree of unpredictability,
the volatility in the growth rates of 8rms, has increased over time.
What is the force driving the counter-cyclical skewness in the growth rate distri-

bution? The pattern noted in Section 3 implies that there are relatively more 8rms
with above average growth rates in recoveries than in recessions. This could be due to
changes in the growth-size behaviour depending on the business cycle. In recoveries,

12 Except for the extreme business cycle years we do not 8nd that � departs signi8cantly from unity.
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the median growth rate may be higher than the mean because a larger number of small
8rms grow faster than the fewer large 8rms, while in a recession, the median may be
lower than the mean growth rate, due to many small 8rms having lower growth rates
than those of larger 8rms. If this is the main driving force, we would expect to see
�t to be counter-cyclical and for the 8rst term to dominate the total in (8). Figs. 3
and 4 clearly shows the dominance of the second term, and this implies that it is the
aggregate shocks that hold the key to the observed pattern.
One important point about short run growth is that the transitory components may

dominate permanent components in the short run. Transitory components bias the OLS
estimate of �t downwards; 8rms that are of transitorily low size will show higher
growth rates than 8rms that are of transitorily high size. It is possible to treat this
as an error in variables problem, as Hart and Oulton (1995) have, and control for
the transitory in7uences by estimating a reverse regression to get a compromise es-
timate of �t (the geometric mean of the standard coe?cient and the inverse of the
reverse regression coe?cient). 13 In Fig. 5 we have also presented the estimates of
the compromise coe?cient. We 8nd that this coe?cient is quite close to the stan-
dard Galtonian coe?cient. It is clear that the transitory components are not respon-
sible for the increasing dispersion or the counter-cyclical skew of the growth rate
distribution.

13 See Prais (1958) and Maddala (1992). This also assumes there is zero correlation between errors in
dependent and independent variables. It may be that transitory components are larger among the small 8rms
than the large.
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Fig. 6. Deciles of unweighted growth rates 1951–1999.

5. The role of aggregate shocks

We now turn to a closer examination of the e3ect of aggregate shocks on 8rms
di3erentiated by growth rates. To do this we examine the time series properties of our
data set. However, we cannot rely upon a su?cient run of growth rates for individual
8rms. The population of quoted companies is subject to continuous attrition through
takeover and merger as well as new 8rms entering or 8rms exiting through bankruptcy.
Instead we select percentiles of the order statistics. This provides us with 99 time series
made up of the growth rates of 8rms at each percentile in each year. Since the growth
rate of the 8rm is very weakly correlated with size, each percentile is going to be
largely a random draw from the size distribution of 8rms.
We have plotted the deciles of these growth rates in Fig. 6. Even for the top and

bottom deciles there appears to be a cyclical pattern. Clearly aggregate shocks have
a pervasive e3ect on 8rms growing at di3erent rates. However, if we calculate the
correlation matrix for the deciles and include the rate of growth of gdp, as shown in
Table 5, we note that the correlation with gdp growth diminishes as we move away
from the 5 and 6th deciles with the weakest correlation between the 1st decile of
(contracting) 8rms and gdp. To the extent to which the aggregate growth rate captures
aggregate shocks, the smaller e3ect on the high and low deciles could imply the sort
of distortions in the cross-sectional distributions over business cycles that we have
observed. The central mass of the growth rate distribution responds more strongly to
the aggregate shock than the tails. So a negative shock moves the central mass closer to
the left of the distribution leaving the right tail behind and generates positive skewness.
A positive shock shifts the central mass to the right, closer to the group of rapidly
growing 8rms and away from the group of declining 8rms. So negative skewness
results.
We can re8ne the analysis further if we look more closely at the a3ect of aggregate

shocks at the percentile level. In Table 6 we report GMM estimates of the 5th, 30th,
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Table 5
Correlation matrix of deciles and gdp growth, 1951–1999

1st 2nd 3rd 4th 5th 6th 7th 8th 9th %gdp
Decile Decile Decile Decile Decile Decile Decile Decile Decile

1.000 0.980 0.954 0.921 0.870 0.791 0.704 0.590 0.473 0.655
0.980 1.000 0.992 0.974 0.936 0.869 0.791 0.688 0.572 0.721
0.954 0.992 1.000 0.994 0.970 0.918 0.852 0.759 0.647 0.761
0.921 0.974 0.994 1.000 0.989 0.951 0.895 0.812 0.705 0.787
0.870 0.936 0.970 0.989 1.000 0.984 0.947 0.881 0.787 0.805
0.791 0.869 0.918 0.951 0.984 1.000 0.986 0.943 0.866 0.812
0.704 0.791 0.852 0.895 0.947 0.986 1.000 0.981 0.929 0.803
0.590 0.688 0.759 0.812 0.881 0.943 0.981 1.000 0.970 0.772
0.473 0.572 0.647 0.705 0.787 0.866 0.929 0.970 1.000 0.727
0.655 0.721 0.761 0.787 0.805 0.812 0.803 0.772 0.727 1.000

Table 6
The e3ects of aggregate gdp on percentiles of cross-sectional growth rates: GMM estimates of the model:
(1− �1L− �2L2)pi = �0 + �1ULn(gdpt)

Percentile �0 �1 �2 �1 R2 DW J

5 −9:68803 0.549615 0.049033 0.988155 0.687 1.696 0.416
−17:48 7.92 0.79 7.67

30 −5:84198 0.361554 0.02755 1.500577 0.701 1.335 0.402
−14:42 5.74 0.42 14.12

50 −1:85065 0.352367 0.010346 1.291015 0.663 1.666 0.521
−3:21 4.97 0.16 12.44

70 2.111926 0.379314 −0:02684 1.124021 0.663 1.735 0.671
2.29 4.73 −0:42 10.94

95 8.090188 0.334958 0.176554 0.56316 0.662 1.635 0.284
5.10 5.10 4.25 8.70

50th, 70th and 95th percentiles regressed on gdp growth. We estimate the relationship:

(1− �1L− �2L2)pi = �0 + �1ULn(gdpt); (10)

where pi is the ith percentile and L is the lag operator. t-statistics are shown be-
low parameter estimates. J is the p-value for the Newey–West J -statistic with 5
over-identifying restrictions. The instrument set includes all lagged variables plus cur-
rent and lagged values of short- and long-term interest rates as well as Tobin’s Q
(obtained from Smithers and Wright, 2000). The e3ect of the aggregate is lower for
the highest and lowest percentiles. This is shown visually in Fig. 7 where we have
plotted the coe?cient, �1 for the 1st–99th percentile; ±2 standard errors are also plot-
ted. The shape of this pro8le con8rms what we have found but with some re8nements.
The aggregate shock seems to be at its strongest at the 28th decile and declines rapidly
away towards the lowest deciles (8rms that are declining). The e3ect declines more or
less monotonically as we move up the percentiles until the 70th percentile after which
it falls away rapidly for the fastest growing 8rms.
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Fig. 7. Estimates of �1 for each percentile in the relationship (1− �1L− �2L2)pi = �0 + �1ULn(gdpt), with
±2 standard errors.

This cross-sectional pattern to the correlation between the aggregate economy and
growth rates provides a heuristic explanation for some of the cross-sectional features we
have observed empirically. Note that we have found that the spread and skewness are
negatively correlated with the business cycle, while kurtosis is positively correlated.
Since aggregate shocks impact on 8rms growing at di3erent rates according to the
pattern shown in Fig. 7, we can explain the e3ects on the higher moments. Suppose
that there is a positive aggregate shock and we divided the growth rate percentiles
into 4 groups: percentiles 2–8, 9–30, 31–85 and 85–99. The middle two groups are
shunted closer to the fourth group and away from the 8rst group, which tends to
generate negative skewness. Equally the second group also moves closer to the third,
so this causes the standard deviation to decline during the economic upswing. At the
same time the concentration of mass in the centre of the distribution and in the tails
increases kurtosis. Nevertheless, this still leaves unexplained why aggregate shocks
a3ect 8rms growing at di3erent rates in di3erent ways.

6. Conclusions

Our empirical results provide some lessons for both macro and industrial economists.
We o3er another dimension to the analysis of business cycles by using a database
of 8rm sales from 1950 to 1999 for the USA. This allows us to observe how the
cross-section of sales and its growth rate evolves over long periods of time and varies
with the business cycle. We 8nd that there is a cyclical pattern to the higher moments
of the cross-sectional distribution.
We have investigated two explanations for these stylised facts drawing in part on

the literature in industrial economics concerning the relationship between the size of
the 8rm and its growth.We 8nd that the size-growth relationship contributes little to an
explanation of the stylised facts. However, we 8nd that aggregate shocks have di3erent
correlations with 8rms depending upon how rapidly they are declining or expanding.
Firms in the middle of the growth distribution are more correlated with aggregate
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shocks so an adverse shock shifts the mass of the distribution towards the left, leaving
rapidly growing 8rms behind so that positive skewness emerges. With a positive shock,
the mass of the distribution shifts to the right, in this case leaving declining 8rms
behind and generating negative skewness. Corporate policy has generally focussed on
the growth performance of small 8rms relative to large, over the business cycle and over
the longer horizon. If 8rms most susceptible to 7uctuations in the economic climate
are those in the middle range in terms of growth, then the objective of modulating the
amplitude of the business cycle is best served by shifting the focus of policy to 8rms
in the middle range of growth.
There are a number of aspects of this analysis that requires more attention. We

have identi8ed both size and growth as important aspects but we have ignored the
industrial dimension in the sense that we do not allow for products or sectors that
may be more or less cyclical because of the structure of demand and its sensitivity
to shocks to permanent income. We have also been vague about the precise form of
the aggregate shocks. It would be useful to explore what sort of aggregate supply or
demand shocks contribute to the cross-sectional dynamics we observe. There is also
an extensive literature on the credit channel (Greenwald and Stiglitz, 1993) and how
the size of the 8rm may matter for how monetary policy impacts on 8rm behaviour.
The extent to which the distortions to the cross-sectional distributions we 8nd are due
to supply and=or demand shocks remains an unresolved issue.
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