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Abstract. We propose a relaxation scheme for mathematical programs with equilibrium con-
straints (MPECs). In contrast to previous approaches, our relaxation is two-sided: both the com-
plementarity and the nonnegativity constraints are relaxed. The proposed relaxation update rule
guarantees (under certain conditions) that the sequence of relaxed subproblems will maintain a
strictly feasible interior—even in the limit. We show how the relaxation scheme can be used in
combination with a standard interior-point method to achieve superlinear convergence. Numerical
results on the MacMPEC test problem set demonstrate the fast local convergence properties of the
approach.
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1. Introduction. Consider the generic mathematical program with equilibrium
constraints (MPEC), expressed as

(MPEC) minimize
x

f(x)

subject to c(x) = 0,

min(x1, x2) = 0,

x0 ≥ 0,

where x = (x0, x1, x2) ∈ Rp×n×n, f : Rp+2n → R is the objective function, and
c : Rp+2n → Rm is a vector of constraint functions. The complementarity constraint
min(x1, x2) = 0 requires that either [x1]j or [x2]j vanishes for each component j =
1, . . . , n and that the vectors x1 and x2 are nonnegative. See the survey paper by
Ferris and Pang [5] for examples of complementarity models and the monographs by
Luo, Pang, and Ralph [13] and Outrata, Kocvara, and Zowe [17] for details on MPEC
theory and applications.

MPECs can be reformulated as standard nonlinear programs (NLPs) by replacing
the nonsmooth complementarity constraint by a set of equivalent smooth constraints:

min(x1, x2) = 0 ⇐⇒ X1x2 = 0, x1, x2 ≥ 0,
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where X1 = diag(x1). However, these constraints do not admit a strictly feasible
point, which implies that both the linear independence and the weaker Mangasarian–
Fromovitz constraint qualifications are violated at every feasible point. These condi-
tions are key ingredients for standard convergence analyses of NLP methods.

We propose a strategy that forms a sequence of NLP approximations to the
MPEC, each with a feasible set that has a strict interior and that will typically
satisfy a constraint qualification. In contrast to previous approaches, the relaxation
is two-sided: both the complementarity (X1x2 = 0) and the nonnegativity (x1, x2 ≥
0) constraints are relaxed. The proposed relaxation update rules guarantee (under
certain conditions) that the sequence of relaxed subproblems will maintain a strictly
feasible interior—even in the limit. Consequently, a standard interior method may be
applied to the relaxed subproblem, as we show in section 4. The relaxation scheme
could, in principle, be used in combination with other Newton-type methods, such as
sequential quadratic programming or linearly constrained Lagrangian [8] methods.

1.1. Other work on MPECs. The direct application of off-the-shelf nonlinear
optimization codes to MPECs was long neglected following early reports of their
poor performance. See, for example, Luo, Pang, and Ralph [13] and, more recently,
Anitescu [1], who describes the poor performance of the popular MINOS [15] code on
MacMPEC [11] test problems. Interest in the application of standard NLP methods
to MPECs has been revitalized for two reasons, however. First, it is now clear that the
approach makes sense because strong stationarity implies the existence of standard
NLP multipliers for MPECs in their NLP form, albeit an unbounded set (see Fletcher
et al. [6]). Second, Fletcher and Leyffer [7] report promising numerical results for
sequential quadratic programming (SQP) codes. These favorable numerical results
are complemented by the local convergence analysis in [6].

Considerable effort has gone into the specialization of standard nonlinear pro-
gramming methods in answer to the attendant difficulties of reformulating MPECs
as NLPs. The approaches can be roughly divided into two categories: penalization
and relaxation strategies. Such a categorization may be viewed as synthetic, how-
ever, because both approaches share the same philosophy: to relax the troublesome
complementarity constraints. The difference is evident in the methodology.

The first analyses of penalization approaches can be found in Scholtes and Stöhr
[21] and in Anitescu [1]. The strategy is to eliminate the explicit complementarity
constraints X1x2 = 0 by adding an exact penalty function to the objective to account
for complementarity violation. The structural ill-posedness is thereby removed from
the constraints. Anitescu gives conditions under which SQP methods with an elastic
mode, such as SNOPT, will converge locally at a fast rate when applied to MPECs.
Hu and Ralph [9] analyze the global convergence of the penalization method with
exact solves. Anitescu [2] gives global convergence results with inexact solves. The
penalization approach has been applied within the interior-point context by Benson,
Shanno, and Vanderbei [4] and Leyffer, Lopez-Calva, and Nocedal [10]. Both papers
report very good numerical results. Leyffer, Lopez-Calva, and Nocedal also give a
comprehensive global and local convergence analysis of the penalization approach
within an interior-point framework.

The relaxation approach (sometimes called regularization) keeps the complemen-
tarity constraints explicit but relaxes them to X1x2 ≤ δk, where δk is a positive vector
that is driven to zero. This scheme replaces the MPEC by a sequence of relaxed sub-
problems whose strictly feasible region is nonempty. The approach was extensively
analyzed by Scholtes [22]. We call this a one-sided relaxation scheme to contrast it
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against our approach. The one-sided relaxation strategy has been adopted by Liu and
Sun [12] and Raghunathan and Biegler [18]. Liu and Sun propose an interior method
that solves each of the relaxed subproblems to within a prescribed tolerance. On the
other hand, the method of Raghunathan and Biegler takes only one iteration of an
interior method on each of the relaxed subproblems. A difficulty associated with both
methods is that the strictly feasible regions of the relaxed problems become empty
in the limit, and this may lead to numerical difficulties. Raghunathan and Biegler
address this difficulty by using a modified search direction that ensures that their
algorithm converges locally at a quadratic rate.

The relaxation scheme that we propose (described in section 3) does not force
the strictly feasible regions of the relaxed MPECs to become empty in the limit. As
a result, one can apply a standard interior method to the relaxed problems without
having to modify the search direction, as in [18]. But like [18], our algorithm (de-
scribed in section 4) performs only one interior iteration per relaxed problem. We
show in section 4.2 that it converges locally at a superlinear rate, and in section 5
we discuss some implementation issues. We illustrate in section 6 the performance
of the algorithm on a subset of the MacMPEC test problems. The numerical results
seem to reflect our local convergence analysis and give evidence to the algorithm’s
effectiveness in practice.

1.2. Definitions. Unless otherwise specified, the function ‖x‖ represents the
Euclidean norm of a vector x. With vector arguments, the functions min(·, ·) and
max(·, ·) apply componentwise to each element of the arguments. Denote by [ · ]i the
ith component of a vector. The uppercase variables X, S, V , and Z denote diagonal
matrices formed from the elements of the vectors x, s, v, and z, respectively. Let g(x)
denote the gradient of the objective function f(x). Let A(x) denote the Jacobian of
c(x), a matrix whose ith row is the gradient of [c(x)]i. Let Hi(x) denote the Hessian
of [c(x)]i.

We make frequent use of standard definitions for linear independence constraint
qualification (LICQ) and strict complementary slackness (SCS), and the second order
sufficiency condition (SOSC). These definitions can be found in [16, Ch. 12].

2. Optimality conditions for MPECs. The standard KKT theory of non-
linear optimization is not directly applicable to MPECs because standard constraint
qualifications do not hold. There is a simple way around this problem, however, as
observed by Scheel and Scholtes [20]. At every feasible point of the MPEC one can
define the relaxed NLP, which is typically well behaved in nonlinear programming
terms. It is shown in [20] that the KKT conditions of the relaxed NLP are necessary
optimality conditions for (MPEC), provided that the relaxed NLP satisfies LICQ.

2.1. First-order conditions and constraint qualification. Let x̄ be feasible
with respect to (MPEC). The relaxed NLP at x̄ is defined as

(RNLPx̄) minimize
x

f(x)

subject to c(x) = 0, x0 ≥ 0

[x1]j = 0, [x2]j ≥ 0 for all j such that [x̄1]j = 0 < [x̄2]j ,

[x1]j ≥ 0, [x2]j = 0 for all j such that [x̄1]j > 0 = [x̄2]j ,

[x1]j ≥ 0, [x2]j ≥ 0 for all j such that [x̄1]j = 0 = [x̄2]j .

The feasible region defined by the bound constraints of (RNLPx̄) is larger than that
defined by the equilibrium constraints. Hence the term relaxed NLP. Most important,
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the problematic equilibrium constraints of (MPEC) have been substituted by a better-
posed system of equality and inequality constraints.

Define

L(x, y) = f(x) − yTc(x)

as the Lagrangian function of RNLPx̄.
Despite a possibly larger feasible set, it can be shown that if LICQ holds for

(RNLPx∗), its KKT conditions are also necessary optimality conditions for (MPEC)
[20]. This observation leads to the following stationarity concept for MPECs.

Definition 2.1. A point (x∗, y∗, z∗) is strongly stationary for (MPEC) if it
satisfies the KKT conditions for (RNLPx∗):

∇xL(x∗, y∗) = z∗,(2.1a)

c(x∗) = 0,(2.1b)

min(x∗
0, z

∗
0) = 0,(2.1c)

min(x∗
1, x

∗
2) = 0,(2.1d)

[x∗
1]j [z

∗
1 ]j = 0,(2.1e)

[x∗
2]j [z

∗
2 ]j = 0,(2.1f)

[z∗1 ]j , [z
∗
2 ]j ≥ 0, if [x∗

1]j = [x∗
2]j = 0.(2.1g)

With the relaxed NLP we can define a constraint qualification for MPECs anal-
ogous to LICQ and deduce a necessary optimality condition for MPECs.

Definition 2.2. The point x∗ satisfies MPEC linear independence constraint
qualification (MPEC-LICQ) for (MPEC) if it is feasible and if LICQ holds at x∗ for
(RNLPx∗).

Proposition 2.3 (see, for example, Scheel and Scholtes [20]). If x∗ is a local
minimizer for (MPEC) at which MPEC-LICQ holds, then there exist unique multi-
pliers y∗ and z∗ such that (x∗, y∗, z∗) is strongly stationary.

2.2. Strict complementarity and second-order sufficiency. Through the
relaxed NLP we can define strict complementarity and second-order conditions for
MPECs. These play a crucial role in the development and analysis of the relaxation
scheme proposed in this paper.

We define two different strict complementary slackness conditions for MPECs.
The first of the two is stronger and is the one assumed in [22, Theorem 4.1]. It
requires all multipliers z0, z1, and z2 to be strictly complementary with respect to
their associated primal variables. In our analysis, we only assume the second, less
restrictive condition, which only requires strict complementarity of z0.

Definition 2.4. The triple (x∗, y∗, z∗) satisfies the MPEC strict complemen-
tary slackness (MPEC-SCS) condition for (MPEC) if it is strongly stationary, if
max(x∗

0, z
∗
0) > 0, and if [x∗

i ]j + [z∗i ]j 
= 0 for each i = 1, 2 and j = 1, . . . , n.
Definition 2.5. The triple (x∗, y∗, z∗) satisfies MPEC weak strict comple-

mentary slackness (MPEC-WSCS) for (MPEC) if it is strongly stationary and if
max(x∗

0, z
∗
0) > 0.

We define two second-order sufficient conditions for MPECs: MPEC-SOSC and
MPEC-SSOSC. The first condition is equivalent to the RNLP-SOSC defined by Ralph
and Wright [19, Definition 2.7]. The second condition is stronger than the RNLP-
SSOSC defined in [19, Definition 2.8].
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The tangent cone of the feasible set of (RNLPx∗) is given by

T = {αp | α > 0, p ∈ Rn}
∩ {p | A(x∗)p = 0}
∩ {p | [p0]j ≥ 0 for all j such that [x∗

0]j = 0}.

The second-order sufficient condition for optimality depends on positive curvature of
the Lagrangian in a subspace, i.e.,

(2.2) pT∇2
xxL(x∗, y∗)p > 0, p 
= 0,

for all p in some subset of the feasible directions T .
Definition 2.6. The triple (x∗, y∗, z∗) satisfies the MPEC second-order suffi-

ciency condition (MPEC-SOSC) for (MPEC) if it is strongly stationary and if (2.2)
holds for all nonzero p ∈ F , where

F def
= {p ∈ T | [p0]j = 0 for all j such that [x∗

0]j = 0 (and [z∗0 ]j > 0),

[p0]j ≥ 0 for all j such that [x∗
0]j = 0 (and [z∗0 ]j = 0),

[pi]j = 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j 
= 0), i = 1, 2,

[pi]j ≥ 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j = 0), i = 1, 2,

[pi]j = 0 for all j such that [x∗
i ]j = 0 < [x∗

� ]j , i, � = 1, 2, i 
= �}.

If the last two conditions in the definition of F are dropped, we obtain a stronger
second-order condition, which is equivalent to the one assumed in [22, Theorem 4.1].

Definition 2.7. The triple (x∗, y∗, z∗) satisfies MPEC strong second-order suffi-
ciency condition (MPEC-SSOSC) for (MPEC) if it is strongly stationary and if (2.2)
holds for all nonzero p ∈ F , where

F def
= {p ∈ T | [p0]j = 0 for all j such that [x∗

0]j = 0 (and [z∗0 ]j > 0),

[p0]j ≥ 0 for all j such that [x∗
0]j = 0 (and [z∗0 ]j = 0),

[pi]j = 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j 
= 0), i = 1, 2}.

Note that MPEC-SSOSC ensures that the Hessian of the Lagrangian has posi-
tive curvature in the range space of all nonnegativity constraints (x1, x2 ≥ 0) whose
multipliers are zero. Note also that MPEC-SOSC and -SSOSC are equivalent when
MPEC-SCS holds.

In our analysis, we assume MPEC-WSCS and -SSOSC. However, we note that
our results are also valid under MPEC-SCS and -SOSC. To see this, simply note that
MPEC-SCS implies MPEC-WSCS and that MPEC-SOSC and -SSOSC are equivalent
when MPEC-SCS holds. Thus our analysis holds either under MPEC-SCS and -SOSC,
or under a weaker SCS (at the expense of assuming a stronger SOSC).

Raghunathan and Biegler [18] make a strict complementarity assumption that is
more restrictive than MPEC-WSCS but less restrictive than MPEC-SCS. In particu-
lar, they require max(x∗

0, z
∗
0) > 0 and [z∗i ]j 
= 0 for all j such that [x̄1]j = [x̄2]j = 0.

This condition is termed upper-level SCS (MPEC-USCS) in [19]. The strength of the
second-order condition they assume is also between that of MPEC-SOSC and MPEC-
SSOSC. In particular, their second-order condition is obtained from the MPEC-SOSC
by dropping the last condition in the definition of F .
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3. A strictly feasible relaxation scheme. In this section we propose a relax-
ation scheme for which the strictly feasible region of the relaxed problems may remain
nonempty even in the limit.

A standard relaxation of the complementarity constraint proceeds as follows. The
complementarity constraint min(x1, x2) = 0 is first reformulated as the system of
inequalities X1x2 ≤ 0 and x1, x2 ≥ 0. A vector δc ∈ Rn of strictly positive parameters
relaxes the complementarity constraint to arrive at

(3.1) X1x2 ≤ δc, x1, x2 ≥ 0.

The original complementarity constraint is recovered when δc = 0. Note that at
all points feasible for (MPEC) the gradients of the active constraints in (3.1) are
linearly independent when δc > 0. Moreover, the strictly feasible region of the relaxed
constraints (3.1) is nonempty when δc > 0. Unfortunately, the strictly feasible region
of the relaxed MPEC becomes empty as the components of δc tend to zero.

3.1. A two-sided relaxation. In contrast to (3.1), our proposed scheme addi-
tionally relaxes each component of the bounds x1, x2 ≥ 0 by the amounts [δ1]j > 0
and [δ2]j > 0 so that the relaxed complementarity constraints become

(3.2) X1x2 ≤ δc, x1 ≥ −δ1, x2 ≥ −δ2,

where δc, δ1, δ2 ∈ Rn are vectors of strictly positive relaxation parameters. Note
that for any relaxation parameter vectors (δ1, δ2, δc) that satisfy max(δc, δ1) > 0
and max(δc, δ2) > 0, the strictly feasible region of (3.2) is nonempty, and the active
constraint gradients are linearly independent.

The main advantage of the strictly feasible relaxation scheme (3.2) is that there
is no need to drive both relaxation parameters to zero to recover a stationary point of
the MPEC. As we show in Theorem 3.1, for any strongly stationary point of (MPEC)
that satisfies MPEC-LICQ, -WSCS, and -SSOSC, there exist relaxation parameter
vectors (δ∗1 , δ

∗
2 , δ

∗
c ) satisfying max(δ∗c , δ

∗
1) > 0 and max(δ∗c , δ

∗
2) > 0 such that the

relaxed MPEC satisfies LICQ, SCS, and SOSC.

3.2. An example. The intuition for the relaxation scheme proposed in sec-
tion 3.1 is best appreciated with an example. Consider the MPEC [22]

(3.3)
minimize

x

1
2

[
(x1 − a)2 + (x2 − b)2

]
subject to min(x1, x2) = 0

and the associated relaxed MPEC derived by applying the relaxation (3.2) to (3.3):

(3.4)

minimize
x

1
2

[
(x1 − a)2 + (x2 − b)2

]
subject to x1 ≥ −δ1,

x2 ≥ −δ2,

X1x2 ≤ δc.

For any choice of parameters a, b > 0, (3.3) has two local minimizers: (a, 0) and
(0, b). Each is strongly stationary and satisfies MPEC-LICQ, -SCS, and -SOSC and
thus they also satisfy MPEC -LICQ, -WSCS, and -SSOSC. Evidently, these local
minimizers are also minimizers of (3.4) for δc = 0 and for any δ1, δ2 > 0. If the data
are changed so that a > 0 and b < 0, then the point (a, 0) is a unique minimizer
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of (3.3), and also a unique minimizer of (3.4) for any δc > 0 and for δ1 = δ2 = 0.
Moreover, if a, b < 0, then (0, 0) is the unique minimizer of (3.3) and also a unique
minimizer of (3.4) for any δc > 0 and for δ1 = δ2 = 0. Thus there is no need to drive
both δc and δ1, δ2 to zero to recover a stationary point of (MPEC).

A key property of MPECs that we exploit is the fact that the MPEC multipliers
provide information about which relaxation parameters need to be driven to zero. To
illustrate this, let us suppose a, b > 0 and consider the local minimizer (a, 0) of the
MPEC. In this simple example the minimizer of the relaxed problem will lie on the
curve X1x2 = δc for all sufficiently small δc. The MPEC solution will be recovered
if we drive δc to zero. The values of the other parameters δ1, δ2 have no impact as
long as they remain positive; the corresponding constraints will remain inactive. Note
that this situation occurs precisely if the MPEC multiplier of the active constraint,
here x2 ≥ 0, is negative, that is, the gradient of the objective function points outside
of the positive orthant. If this situation is observed algorithmically, we will reduce δc
and keep δ1, δ2 positive. A similar argument can be made if the gradient points in
the interior of the positive orthant, in which case δ1 or δ2 need to be driven to zero
to recover the MPEC minimizer. The parameter δc, however, must remain positive
to maintain the strict interior of the feasible set.

The foregoing cases correspond to nondegenerate solutions; that is, there are no
biactive constraints. Biactivity occurs in the example if a, b < 0. In this case the
minimizer is the origin, and both MPEC multipliers are positive. Hence, we need to
drive δ1, δ2 to zero and keep δc positive to avoid a collapsing strictly feasible region.

To see how one can recover an MPEC minimizer that satisfies MPEC-WSCS
and -SSOSC, consider the example with a = 0 and b = 1. In this case (0, 1) is a
minimizer satisfying MPEC-WSCS and -SSOSC. To recover this minimizer from the
relaxed MPEC (3.4) we do not need to drive any of the three relaxation parameters to
zero. In particular, it is easy to see that (0, 1) is a minimizer to the relaxed problem
satisfying LICQ, SCS, and SOSC for any δ1, δ2, δc > 0.

Our goal in the remainder of this paper is to turn this intuition into an algorithm
and to analyze its convergence behavior for general MPECs.

3.3. The relaxed MPEC. In addition to introducing the relaxation parameter
vectors (δ1, δ2, δc), we introduce slack variables s ≡ (s0, s1, s2, sc) so that only equality
and nonnegativity constraints on s are present. The resulting relaxed MPEC is

(MPEC-δ) minimize
x,s

f(x)

subject to c(x) = 0 : y,

s0 − x0 = 0 : v0,

s1 − x1 = δ1 : v1,

s2 − x2 = δ2 : v2,

sc + X1x2 = δc : vc,

s ≥ 0,

where the dual variables y and v ≡ (v0, v1, v2, vc) are shown next to their correspond-
ing constraints. We note that the slack variable s0 is not strictly necessary—the
nonnegativity of x0 could be enforced directly. However, such a device may be useful
in practice because an initial value of x can be used without modification, and we
need to choose starting values only for s, y, and v. Moreover, this notation greatly
simplifies the following discussion.
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To formulate the stationarity conditions for the relaxed MPEC, we group the
set of equality constraints involving the slack variables s into a single expression by
defining

(3.5) h(x, s) = −

⎡
⎢⎢⎢⎢⎣

s0 − x0

s1 − x1

s2 − x2

sc + X1x2

⎤
⎥⎥⎥⎥⎦ and δ =

⎡
⎢⎢⎢⎢⎣

0

δ1

δ2

δc

⎤
⎥⎥⎥⎥⎦ .

The Jacobian of h with respect to the variables x is given by

(3.6) B(x) ≡ ∇xh(x, s)T =

⎡
⎢⎢⎢⎢⎣

I

I

I

−X2 −X1

⎤
⎥⎥⎥⎥⎦ .

The tuple (x∗, s∗, y∗, v∗) is a KKT point for (MPEC-δ) if it satisfies

∇xL(x, y) −B(x)Tv ≡ rd= 0,(3.7a)

min(s, v) ≡ rc= 0,(3.7b)

c(x) ≡ rf= 0,(3.7c)

h(x, s) + δ ≡ rδ = 0.(3.7d)

Define the vector w = (x, s, y, v) and the vector r(w; δ) = (rd, rc, rf , rδ) as a function
of w and δ. With this notation, w∗ is a KKT point for (MPEC-δ) if ‖r(w∗; δ)‖ = 0.
The Jacobian of (3.7) is given by

K(w) ≡

⎡
⎢⎢⎢⎢⎣

H(x) −A(x)T −B(x)T

V S

A(x)

B(x) −I

⎤
⎥⎥⎥⎥⎦ ,

where

H(x) ≡ ∇2
xxL(x, y) +

⎡
⎣0

Vc

Vc

⎤
⎦ .

3.4. Properties of the relaxed MPEC. Stationary points of (MPEC-δ) are
closely related to those of (MPEC) for certain values of the relaxation parameters.
The following theorem makes this relationship precise.

Theorem 3.1. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC), and let
the vector δ∗ satisfy

[δ∗i ]j = 0 if [z∗i ]j > 0,(3.8a)

[δ∗i ]j > 0 if [z∗i ]j ≤ 0,(3.8b)

[δ∗c ]j = 0 if [z∗1 ]j < 0 or [z∗2 ]j < 0,(3.8c)

[δ∗c ]j > 0 if [z∗1 ]j ≥ 0 and [z∗2 ]j ≥ 0(3.8d)
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for i = 1, 2 and j = 1, . . . , n. Then

(3.9) max(δ∗c , δ
∗
1) > 0 and max(δ∗c , δ

∗
2) > 0,

and the point (x∗, s∗, y∗, v∗), with

(s∗0, s
∗
1, s

∗
2) = (x∗

0, x
∗
1 + δ∗1 , x

∗
2 + δ∗2),(3.10a)

(v∗0 , v
∗
1 , v

∗
2) = (z∗0 , [z

∗
1 ]+, [z∗2 ]+),(3.10b)

s∗c = δ∗c ,(3.10c)

and

[v∗c ]j =

⎧⎪⎨
⎪⎩

[−z∗1 ]+j /[x
∗
2]j if [x∗

2]j > 0 (and [x∗
1]j = 0),

[−z∗2 ]+j /[x
∗
1]j if [x∗

1]j > 0 (and [x∗
2]j = 0),

0 if [x∗
1]j = [x∗

2]j = 0

(3.10d)

for j = 1, . . . , n, is a stationary point for (MPEC-δ∗). Moreover, if (x∗, y∗, z∗) satis-
fies MPEC- LICQ, -WSCS, or -SSOSC for (MPEC), then (x∗, s∗, y∗, v∗) satisfies the
LICQ, SCS, or SOSC, respectively, for (MPEC-δ∗).

Proof. The proof is divided into three parts. The first part demonstrates that
(x∗, s∗, y∗, v∗) is a stationary point for (MPEC-δ∗) and that SCS is satisfied. The
second and third parts prove that LICQ and SOSC hold for (MPEC-δ∗), respectively,
if MPEC-LICQ and MPEC-SOSC hold.

Part 1. Stationarity and SCS. We first need to show that (3.9) holds. For j =
1, . . . , n consider the following cases. If [z∗1 ]j , [z

∗
2 ]j ≤ 0, then by (3.8b) we have that

[δ∗1 ]j , [δ
∗
2 ]j > 0, and thus (3.9) holds. Note that the case [z∗1 ]j > 0 and [z∗2 ]j < 0 (or

[z∗1 ]j < 0 and [z∗2 ]j > 0) cannot take place because otherwise (2.1e)–(2.1f) imply that
[x∗

1]j , [x
∗
2]j = 0, and then (2.1g) requires [z∗1 ]j , [z

∗
2 ]j ≥ 0, which is a contradiction.

Finally, if [z∗1 ]j , [z
∗
2 ]j ≥ 0, then by (3.8d) we have that [δ∗c ]j > 0. Thus (3.9) holds, as

required.
Next we verify stationarity of (x∗, s∗, y∗, v∗) for (MPEC-δ∗). The point (x∗, y∗, z∗)

is strongly stationary for (MPEC), and so by Definition 2.1, it satisfies conditions (2.1).
Then from (3.5), (3.6), and (3.10), (x∗, y∗, s∗, v∗) satisfies (3.7a) and (3.7c)–(3.7d).

We now show that s∗ and v∗ satisfy (3.7b). First, note from (3.10) that s∗, v∗ ≥ 0
because x∗ ≥ 0 and δ∗c , δ

∗
1 , δ

∗
2 ≥ 0.

To see that s∗ and v∗ are componentwise strictly complementary if WSCS holds
for the (MPEC), recall that WSCS requires that x∗

0 and z∗0 are strictly complementary;
hence (3.10a) and (3.10b) imply that s∗0 and v∗0 are also strictly complementary. For
x∗

1 and x∗
2, consider the indices i = 1, 2. If [z∗i ]j = 0, then [v∗i ]j = 0 and [δ∗i ]j > 0.

From (3.10a) it follows that [s∗i ]j > 0, as required. If [z∗i ]j > 0, then (3.10b) implies
that [v∗i ]j > 0. Moreover, by (2.1e)–(2.1f), and (3.8a), [x∗

i ]j = [δ∗i ]j = 0. Hence
[s∗i ]j = 0, and [s∗i ]j and [v∗i ]j are strictly complementary, as required. If [z∗i ]j < 0,
then [v∗i ]j = 0, and by (3.10a) and (3.8b), [s∗i ]j > 0. Hence [s∗i ]j and [v∗i ]j are
again strictly complementary. It remains to verify that [s∗c ]j and [v∗c ]j are strictly
complementary. If [s∗c ]j = 0, then (3.10c) and (3.8c) imply that [z∗1 ]j < 0 or [z∗2 ]j < 0
and [v∗c ]j > 0 by (3.10d), as required. If [s∗c ]j > 0 then (3.10c) implies that [δ∗c ]j > 0,
and by (3.8d) we have that [z∗1 ]j ≥ 0 and [z∗2 ]j ≥ 0. Then by (3.10d) we know that
[v∗c ]j = 0.

Part 2. LICQ. Next we prove that (x∗, s∗, y∗, v∗) satisfies LICQ for (MPEC-δ∗) if
(x∗, y∗, z∗) satisfies MPEC-LICQ for (MPEC). Note that LICQ holds for (MPEC-δ∗)
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if and only if LICQ holds at x∗ for the following system of equalities and inequalities:

c(x) = 0,(3.11a)

x0 ≥ 0,(3.11b)

x1 ≥ −δ∗1 ,(3.11c)

x2 ≥ −δ∗2 ,(3.11d)

X1x2 ≤ δ∗c .(3.11e)

But MPEC-LICQ implies that the following system of equalities and inequalities
satisfies LICQ at x∗:

(3.12) c(x) = 0, x ≥ 0.

We now show that the gradients of the active constraints in (3.11) are either a subset
or a nonzero linear combination of the gradients of the active constraints in (3.12),
and that therefore they must be linearly independent at x∗. To do so, for j = 1, . . . , n,
we consider the two cases [δ∗c ]j > 0 and [δ∗c ]j = 0.

If [δ∗c ]j > 0, the feasibility of x∗ with respect to (MPEC) implies that the in-
equality [X∗

1x
∗
2]j ≤ [δ∗c ]j is not active. Moreover, because δ∗1 , δ

∗
2 ≥ 0 and x∗ is feasible

with respect to (MPEC), we have that if the constraint [x∗
1]j ≥ −δ∗1 or [x∗

2]j ≥ −δ∗2
is active, then the corresponding constraint [x∗

1]j ≥ 0 or [x∗
2]j ≥ 0 is active. Thus,

for the case [δ∗c ]j > 0, the set of constraints active in (3.11) is a subset of the set of
constraints active in (3.12).

Now consider the case [δ∗c ]j = 0. By (3.9) we have that [δ∗1 ]j , [δ
∗
2 ]j > 0, and

because x∗ is feasible for (MPEC), the jth component (3.11e) is active, but the jth
components of (3.11c)–(3.11d) are inactive. In addition, note that the gradient of
this constraint has all components equal to zero except ∂[X∗

1x
∗
2]j/∂[x1]j = [x∗

2]j and
∂[X∗

1x
∗
2]j/∂[x2]j = [x∗

1]j . Moreover, by (3.8c) we know that either [z∗1 ]j or [z∗2 ]j is
strictly negative, and thus by (2.1g) we have that [max(x∗

1, x
∗
2)]j > 0. Also, because

x∗ is feasible for (MPEC), [min(x∗
1, x

∗
2)]j = 0. Thus one, and only one, of [x∗

1]j
and [x∗

2]j is zero, and thus the gradient of the active constraint [x∗
1]j [x

∗
2]j ≤ [δ∗c ]j

is a nonzero linear combination of the gradient of whichever of the two constraints
[x∗

1]j ≥ 0 and [x∗
2]j ≥ 0 is active.

Thus, the gradients of the constraints active in system (3.11) are either a subset
or a nonzero linear combination of the constraints active in (3.12), and thus LICQ
holds for (MPEC-δ∗).

Part 3. SOSC. To complete the proof, we need to show that SSOSC at (x∗, y∗, z∗)
for (MPEC) implies SOSC at (x∗, s∗, y∗, v∗) for (MPEC-δ∗). Because the slack vari-
ables appear linearly in (MPEC-δ∗), we need only to show that (x∗, y∗, v∗) satisfies
SOSC for the equivalent problem without slack variables,

(3.13)

minimize
x,s

f(x)

subject to c(x) = 0,

x0 ≥ 0,

x1 ≥ −δ∗1 ,

x2 ≥ −δ∗2 ,

X1x2 ≤ δ∗c ,

and with solution (x∗, y∗, v∗). First, we show that the set of critical directions at
(x∗, y∗, v∗) for (3.13) is equal to F (see Definition 2.6). Consider the critical directions
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for the first two constraints of (3.13). Because the constraints c(x) = 0 and x0 ≥ 0
and their multipliers are the same for (MPEC) and (3.13), their contribution to the
definition of the set of critical directions is the same. In particular, we need to consider
critical directions such that A(x∗)p = 0, [p0]j ≥ 0 for all j such that [x∗

0]j = 0, and
[p0]j = 0 for all j such that [z∗0 ]j > 0. Next, consider the critical direction for the last
three constraints of (3.13), x1 ≥ −δ∗1 , x2 ≥ −δ∗2 and X1x2 ≤ δ∗c . Because we have
shown that SCS holds for (3.13) at (x∗, y∗, v∗), we need only to impose the condition
[pi]j = 0 for all j such that [v∗i ]j > 0 for i = 1, 2, and [pi]j = 0 for all i and j such that
[v∗c ]j > 0 and [x∗

i ]j = 0. But note that because of (3.10) and (3.8), this is equivalent
to imposing [pi]j = 0 for all j such that [x∗

i ]j = 0 and [z∗i ]j 
= 0 for i = 1, 2, which is
the definition of F .

But note that the Hessian of the Lagrangian for (3.13) is different from the Hes-
sian of the Lagrangian for (MPEC). The reason is that in (3.13) the complementarity
constraint X1x2 ≤ δ∗c is included in the Lagrangian, whereas we excluded this con-
straint from the definition of the Lagrangian for (MPEC). But it is easy to see that
this has no impact on the value of pT∇2

xxL(x∗, y∗)p > 0 for all p ∈ F . To see this,
note that the Hessian of [X1x2]j has only two nonzero elements:

(3.14) ∇2
[x1]j [x2]j

[X1x2]j =

[
1

1

]
.

If [v∗c ]j = 0, then the Hessian of the complementarity constraint [X1x2]j ≤ [δ∗c ]j is
multiplied by zero, and thus the Hessian of the Lagrangian for (MPEC-δ∗) is the
same as the Hessian of the Lagrangian for (MPEC). Now suppose [v∗c ]j 
= 0. Because
SCS holds for (3.13), we have that [v∗c ]j 
= 0 implies that the set of critical direc-
tions satisfies either [p1]j = 0 or [p2]j = 0. This, together with (3.14), implies that
pT∇2

xx([X∗
1x

∗
2]j)p = 0 for all p ∈ F . In other words, the second derivative of the

complementarity constraint over the axis [x∗
1]j = 0 or [x∗

2]j = 0 is zero. As a result, if
MPEC-SOSC holds, then SOSC must hold for (MPEC-δ∗) because all other terms of
the Hessians of the Lagrangians of both problems are the same and the sets of critical
directions of both problems are the same.

The corollary to Theorem 3.1 is much clearer, but it requires the additional con-
dition that (x∗, s∗, y∗, z∗) is feasible for (MPEC)—in other words, the partitions x∗

1

and x∗
2 are nonnegative and complementary.

Corollary 3.2. Suppose that δ∗ satisfies (3.9) and that (x∗, s∗, y∗, v∗) is a
solution of (MPEC-δ∗) such that min(x∗

1, x
∗
2) = 0. Then the point (x∗, y∗, z∗) is

strongly stationary for (MPEC), where

(3.15) z∗ = B(x∗)Tv∗.

Proof. Equation (3.15) is derived by comparing (2.1) with (3.7).

3.5. Relaxation parameter updates. In this section we show how to con-
struct a sequence of relaxation parameters δk such that limk→∞ δk = δ∗, where δ∗

satisfies (3.8)–(3.9). We are guided by Theorem 3.1 in developing such a parame-
ter update. Under certain conditions (discussed in section 3.6), we can recover the
solution of the original MPEC from the solution of (MPEC-δ∗).

Suppose that wk = (xk, sk, yk, vk) is an estimate of the solution of (MPEC-δk),
and let zk = B(xk)

Tvk be the corresponding MPEC multipliers given by (3.15). Given
an improved estimate wk+1, Algorithm 1 defines a set of rules for updating the re-
laxation parameter vector δk. The algorithm also updates a companion sequence
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Algorithm 1. Relaxation parameter update.

Input: δk, δ
∗
k, wk+1, zk+1

Set fixed parameters κ, τ ∈ (0, 1)

1 [Compute bounds for the KKT residual]
r∗k+1 ← ‖r(wk+1; δ

∗
k)‖1+τ

r∗k+1 ← ‖r(wk+1; δ
∗
k)‖1−τ

for i = 1, 2 and j = 1, . . . , n do
2 [Update bound-constraint relaxations]

if [zik+1]j > r∗k+1 then
[δik+1]j ← min(κ[δik]j , r

∗
k+1)

[δ∗ik+1]j ← 0

else
[δik+1]j ← [δik]j
[δ∗ik+1]j ← [δik]j

3 [Update complementarity-constraint relaxations]
if [z1k+1]j < −r∗k+1 or [z2k+1]j < −r∗k+1 then

[δck+1]j ← min(κ[δck]j , r
∗
k+1)

[δ∗ck+1]j ← 0

else
[δck+1]j ← [δck]j
[δ∗ck+1]j ← [δck]j

return δk+1, δ
∗
k+1

δ∗k ≡ (0, δ∗1k, δ
∗
2k, δ

∗
ck) that defines a nearby relaxed problem (MPEC-δ∗k). In the vicin-

ity of the minimizer, this nearby relaxed problem gives an estimate of the active
constraint set. Also, the residual of (MPEC-δ∗k) is a better optimality measure than
the residual of (MPEC-δk) because while all components of the relaxation parameter
vector δk are strictly positive, some of the components of δ∗k may be zero. The scalars
r∗k and r∗k are lower and upper bounds on the KKT residual of (MPEC-δ∗k); they pro-
vide a measure of nearness to zero of the MPEC multipliers and are used to predict
the sign of the optimal MPEC multipliers.

3.6. Active-set identification. Suppose that δ∗k is a set of relaxation param-
eters that satisfies (3.8) and that therefore defines a one-sided relaxation. Let w∗

k =
(x∗

k, s
∗
k, y

∗
k, v

∗
k) be the minimizer of the associated relaxed problem (MPEC-δ∗k) defined

via (3.10), and let wk be an estimate of w∗
k. If wk is close enough to w∗ and Algo-

rithm 1 is given an improved estimate wk+1, then it will return the same one-sided
relaxation parameter δ∗k+1 = δ∗k. Therefore, (MPEC-δ∗k) will remain fixed. Thus,
the update rules continue to update (and reduce) the same relaxation parameters at
every iteration—this property is used to guarantee that the feasible region remains
nonempty even in the limit. In some sense, it implies that the correct active set is
identified.

We make the following nondegeneracy assumptions about the MPEC minimizer
(x∗, y∗, z∗). These assumptions hold throughout the remainder of the paper.

Assumption 3.3. There exist strictly positive relaxation parameters δ such that
the second derivatives of f and c are Lipschitz continuous over the set

X1x2 ≤ δc, x1 ≥ −δ1, x2 ≥ −δ2.
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Assumption 3.4. The point (x∗, y∗, z∗) satisfies MPEC-LICQ for (MPEC).
Assumption 3.5. The point (x∗, y∗, z∗) satisfies MPEC-WSCS and -SSOSC for

(MPEC).
Theorem 3.6 proves that Algorithm 1 will leave the one-sided relaxation parameter

unchanged if wk+1 improves the estimate wk of w∗
k. Applied iteratively, the algorithm

continues to update the same relaxation parameters δik or δck.
Note from (3.10) that the influence of δ∗k on w∗

k = (x∗
k, s

∗
k, y

∗
k, v

∗
k) is relegated to

only s∗k. We may therefore write w∗
k ≡ (x∗, s∗k, y

∗, v∗). We assume that δ∗k satisfies
(3.8). This implies that δ∗k reveals the sign of the MPEC multipliers at the solution
w∗. We also assume that the (k+1)th iterate wk+1 is closer to the minimizer than the
kth iterate so that ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖. This assumption will hold whenever

we apply a linearly convergent algorithm to compute wk+1 starting from wk.
Theorem 3.6. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC) and

suppose that Assumptions 3.3–3.5 hold. Moreover, assume that δ∗k satisfies (3.8) and
that [δ∗k]j = [δk]j > 0 for all j such that [δ∗k]j 
= 0. Let w∗

k = (x∗, s∗k, y
∗, v∗) be the

solution of the corresponding relaxation (MPEC-δ∗k) given by (3.10), and assume that
‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖. Then if wk is close enough to w∗, the parameter δ∗k+1

generated by Algorithm 1 satisfies δ∗k+1 = δ∗k.
Proof. We first show that r∗k+1 is bounded above and below by a finite multiple of

‖wk+1 − w∗
k‖1−τ . By definition of w∗

k and δ∗k, r(w
∗
k; δ

∗
k) = 0. Also, by the hypothesis

of this theorem, both wk and wk+1 are close to w∗. Moreover, Assumption 3.3 implies
that the KKT residual r(w; δ) is differentiable. This by Taylor’s theorem implies that

(3.16) r(wk+1; δ
∗
k) = K(w∗

k)(wk+1 − w∗
k) + O(‖wk+1 − w∗

k‖2),

where K(w∗
k) is the Jacobian of the KKT residual r(w; δ) with respect to w evaluated

at w∗
k. Note that this Jacobian does not depend on δ∗k. In addition, as a consequence

of Theorem 3.1, K(w∗
k) is nonsingular. This together with (3.16), imply that there

exist positive constants β2 > β1 such that for wk+1 in the vicinity of w∗
k

β1‖wk+1 − w∗
k‖ ≤ ‖r(wk+1; δ

∗
k)‖ ≤ β2‖wk+1 − w∗

k‖.

Then, by the definition of r∗k+1 (Step 1 of Algorithm 1) we have that

β3‖wk+1 − w∗
k‖1−τ ≤ r∗k+1 ≤ β4‖wk+1 − w∗

k‖1−τ ,(3.17)

where β3 = β1−τ
1 and β4 = β1−τ

2 .
Let ε ≡ 1

2 min(|[z∗]j | | for all j such that [z∗]j 
= 0). Then, condition (3.17) and
the assumptions that wk is close enough to w∗ and ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖ imply

that

(3.18) r∗k+1 < ε.

Moreover, because zk+1 = B(xk+1)
Tvk+1, z∗ = B(x∗)Tv∗, and B(x) is Lipschitz

continuous by Assumption 3.3, we have that for wk close enough to w∗ and ‖wk+1 −
w∗

k‖ < ‖wk − w∗
k‖ the following holds:

(3.19) ‖zk+1 − z∗‖ < ε.

Consider the indices i = 1, 2 and j = 1, . . . , n. Suppose that [z∗]j > 0. Then
(3.18) and (3.19) imply that

(3.20) [zik+1]j = [z∗]j + ([zik+1]j − [z∗]j) > [z∗]j − ε ≥ ε > r∗k+1.



600 DEMIGUEL, FRIEDLANDER, NOGALES, AND SCHOLTES

Suppose instead that [z∗]j < 0. Then (3.18) and (3.19) imply that

−r∗k+1 > −ε > [z∗]j + ε = [zik+1]j − ([zik+1]j − [z∗]j) + ε > [zik+1]j .

Finally, suppose that [z∗]j = 0. Then because τ > 0, we have that for wk close enough
to w∗ and ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖

(3.21) |[zik+1]j | = |[zik+1]j − [z∗]j | ≤ ‖wk+1 − w∗
k‖ ≤ β3‖wk+1 − w∗

k‖1−τ ≤ r∗k+1.

Because δk > 0, the updates in Algorithm 1 imply that δk+1 > 0, and together
with (3.20)–(3.21), we have that δ∗k+1 satisfies (3.8). This in turn implies that the
set of indices j for which [δ∗k+1]j 
= 0 coincides with the set of indices j for which
[δ∗k]j 
= 0. For this same set of indices, moreover, the parameter updates imply that
[δk+1]j = [δk]j . Then because [δ∗k]j = [δk]j for such j, the update rules imply that
δ∗k+1 = δ∗k, as required.

Note that δ∗k+1 = δ∗k implies that w∗
k+1 = w∗

k; that is, w∗
k is also a local minimizer

for the relaxed problem for the (k + 1)th iterate.

4. An interior-point algorithm. The discussion thus far has not made use of
a specific optimization algorithm. Theorem 3.6 makes use of an improved estimate of
(MPEC-δ∗k) but does not specify the manner in which it is computed. In this section
we show how to construct a primal-dual interior-point algorithm that at each iteration
will satisfy the conditions of Theorem 3.6. The parameter update rule in Algorithm 1
is invoked at each iteration of the interior method. The barrier parameter is updated
simultaneously. This iteration scheme is repeated until certain convergence criteria
are satisfied.

4.1. Algorithm summary. For the remainder of this section, we omit the de-
pendence of each variable on the iteration counter k when the meaning of a variable is
clear from its context. The search direction is computed by means of Newton’s method
on the KKT conditions of the barrier subproblem corresponding to (MPEC-δ). These
are given by (3.7), where (3.7b) is replaced by

(4.1) Sv − μe ≡ rμ = 0

and μ > 0 is the barrier parameter. An iteration of Newton’s method based on (3.7)
(where (4.1) replaces (3.7b)) computes a step direction by solving the system

(4.2) K(w)Δw = −r(w;μ, δ),

where Δw ≡ (Δx,Δs,Δy,Δv) and r(w;μ, δ) ≡ (rd, rμ, rf , rδ) is the KKT residual
of the barrier problem. (Note the identity r(w; 0, δ) ≡ r(w; δ).) The Jacobian K
is independent of the barrier and relaxation parameters—these appear only in the
right-hand side of (4.2). This is a useful property because it considerably simplifies
the convergence analysis in section 4.2.

To ensure that s and v remain strictly positive (as required by interior-point
methods), each computed Newton step Δw may need to be truncated. Let γ be a
steplength parameter such that 0 < γ < 1. At each iteration we choose a steplength
α so that

(4.3) α = min(αs, αv),

where

αd = min

(
1, γ min

[Δd]j<0
−[d]j/[Δd]j

)
, d = {s, v}.
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Algorithm 2. Interior-Point Relaxation for MPECs.

Input: x0, y0, z0

Output: x∗, y∗, z∗

[Initialize variables and parameters]
Choose starting vectors s0, v0 > 0. Set w0 = (x0, s0, y0, v0). Set the relaxation
and barrier parameters δ0, μ0 > 0. Set parameters 0 < κ, τ, γ̄ < 1. Set the
starting steplength parameter γ̄ ≤ γ0 < 1. Set the convergence tolerance ε > 0.

k ← 0
repeat

[Compute the Newton step]
Solve (4.2) for Δwk

1 [Truncate the Newton Step]
Determine the maximum steplength αk, given by (4.3);
wk+1 ← wk + αkΔwk

[Compute MPEC multipliers]
zk+1 ← B(xk+1)

Tvk+1

[Update relaxation parameters]
Compute δk+1, δ

∗
k+1 with Algorithm 1

2 [Update barrier and step parameters]
μk+1 = min(κμk, r

∗
k+1) [Ensures that limk→∞ μk = 0]

γk+1 = max(γ̄, 1 − μk+1) [Ensures that limk→∞ γk = 1]

k ← k + 1

until (4.4) holds;
x∗ ← xk; y

∗ ← yk; z
∗ ← zk

return x∗, y∗, z∗

Because our analysis focuses on the local convergence properties of the proposed
algorithm, the (k + 1)th iterate is computed as wk+1 = wk +αΔwk. (A globalization
scheme that can choose shorter steps is discussed in section 5.)

Algorithm 2 outlines the interior-point relaxation method. The method takes as
a starting point the triple (x0, y0, z0) as an estimate of a solution of the relaxed NLP
corresponding to (MPEC). The algorithm terminates when the optimality conditions
for (MPEC-δ∗k) are satisfied, that is, when

(4.4) ‖r(wk; δ
∗
k)‖ < ε

for some small and positive ε. Recall that w∗
k = (x∗

k, s
∗
k, y

∗
k, v

∗
k) is the solution to

the one-sided relaxation (MPEC-δ∗k); therefore, ‖r(w∗
k; δ

∗
k)‖ = 0. Note that we never

compute w∗
k—it is used only as an analytical device.

4.2. Superlinear convergence. In this section we analyze the local conver-
gence properties of the interior-point relaxation algorithm. The distinguishing feature
of the proposed algorithm is the relaxation parameters and their associated update
rules. If we were to hold the relaxation parameters constant, the relaxation method
would reduce to a standard interior-point algorithm applied to a fixed relaxed MPEC;
it would converge locally and superlinearly provided that the starting iterate is close
to a nondegenerate minimizer of (MPEC-δk) (and that standard assumptions held).
The main challenge is to show that the interior-point relaxation algorithm continues
to converge locally and superlinearly even when the relaxation parameters change at
each iteration. We use the shorthand notation rk ≡ r(wk;μk, δk) and r∗k ≡ r(wk; δ

∗
k).
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Theorem 4.1. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC) and
suppose that Assumptions 3.3–3.5 hold. Assume that δ∗k satisfies (3.8), and let w∗

k =
(x∗, s∗k, y

∗, v∗) be the solution of the corresponding relaxation (MPEC-δ∗k) given by
(3.10). Then there exists ε > 0 and β > 0 such that if Algorithm 2 is started with
iterates at k = 0 that satisfy

‖wk − w∗
k‖ < ε,(4.5)

‖δk − δ∗k‖ < β‖wk − w∗
k‖1+τ ,(4.6)

μk < β‖wk − w∗
k‖1+τ ,(4.7)

1 − γk < β‖wk − w∗
k‖1+τ ,(4.8)

and

(4.9) [δ∗k]j = [δk]j > 0 for all j such that [δ∗k]j 
= 0,

then the sequence {w∗
k} is constant over all k and {wk} converges Q-superlinearly to

w∗ ≡ w∗
k.

Proof. The proof has three parts. First, we show that there exists a constant
σ > 0 such that ‖wk+1−w∗

k‖ ≤ σ‖wk−w∗
k‖1+τ . Second, we show that δ∗k+1 = δ∗k, and

thus that w∗
k is also a minimizer to the relaxed MPEC corresponding to the (k+ 1)th

iterate. Finally, we show that the conditions of the theorem hold also for the (k+1)th
iterate. The main result therefore follows by induction.

Part 1. ‖wk+1 − w∗
k‖ ≤ σ‖wk − w∗

k‖1+τ . From Assumptions 3.3–3.5 and The-
orem 3.1 we know that K(wk) is nonsingular for all ε > 0 small enough, so that
‖K(wk)

−1‖ is bounded in the vicinity of w∗. Consider only such ε. Define the vec-
tor η∗k = (0, μke, 0, δ

∗
k − δk) with components partitioned as per (3.7). (Note that

rk = r∗k − η∗k.) Then

(4.10)

wk+1 − w∗
k = wk − w∗

k − αkK(wk)
−1rk

= (1 − αk)(wk − w∗
k) + αkK(wk)

−1(K(wk)(wk − w∗
k) − r∗k + η∗k)

= (1 − αk)(wk − w∗
k)

+ αkK(wk)
−1η∗k + αkK(wk)

−1(K(wk)(wk − w∗
k) − r∗k).

Each term on the right-hand side of (4.10) can be bounded as follows. Because
(x∗, y∗, z∗) is a strongly stationary point of (MPEC) satisfying assumptions 3.3–3.5,
Theorem 3.1 applies. Therefore, w∗ satisfies LICQ, SCS, and SOSC for (MPEC-δ∗).
Then by Lemma 5 of [24] we know that there exists a positive constant ε1 such that
|1 − αk| ≤ 1 − γk + ε1‖Δwk‖. Therefore

(4.11) ‖(1 − αk)(wk − w∗
k)‖ ≤

(
(1 − γk) + ε1‖Δwk‖)

)
‖wk − w∗

k‖.

We now further bound the right-hand side of (4.11). Because ‖K(wk)
−1‖ is bounded

for ε small enough, there exists a positive constant ε2 such that

(4.12) ‖Δwk‖ = ‖K(wk)
−1(−r∗k + η∗k)‖ ≤ ε2(‖r∗k‖ + ‖η∗k‖).

Assumption 3.3 implies that the KKT residual r(w;μ, δ), and thus, r(w; δ), is differ-
entiable. Hence there exists a positive constant ε3 such that

(4.13) ‖r∗k‖ = ‖r(wk; δ
∗
k) − r(w∗

k; δ
∗
k)‖ ≤ ε3‖wk − w∗

k‖.
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Moreover, (4.6) and (4.7) imply that there exists a positive constant ε4 such that

(4.14) ‖η∗k‖ ≤ ε4‖wk − w∗
k‖1+τ .

Then substituting (4.12), (4.13), (4.14), and condition (4.8), into (4.11) we have

(4.15) ‖(1 − αk)(wk − w∗
k)‖ ≤ (β + ε1ε2ε4)‖wk − w∗

k‖2+τ + ε1ε2ε3‖wk − w∗
k‖2.

From the boundedness of ‖K(wk)
−1‖ around w∗

k and (4.14), the second term in (4.10)
satisfies

‖αk K(wk)
−1η∗k‖ ≤ αk‖K(wk)

−1‖ ‖η∗k‖ ≤ ε5‖wk − w∗
k‖1+τ

for some positive constant ε5. Finally, the third term in (4.10) satisfies (using Taylor’s
theorem and again the fact that ‖K(wk)

−1‖ is bounded around w∗
k)

(4.16) ‖αk K(wk)
−1(K(wk)(wk − w∗

k) − r∗k)‖ ≤ ε6‖wk − w∗
k‖2

for some positive constant ε6. Hence, (4.10) and (4.15)–(4.16) yield

(4.17) ‖wk+1 − w∗
k‖ ≤ σ‖wk − w∗

k‖1+τ

for some positive constant σ, as required.
Part 2. δ∗k+1 = δ∗k. Note that by (4.17) we know that for ε small enough the

assumptions of Theorem 3.6 hold and therefore δ∗k+1 = δ∗k. As a result, w∗
k is also a

minimizer of (MPEC-δ∗k+1).
Part 3. The theorem hypotheses also hold for the (k + 1)th iterate. As δ∗k+1 = δ∗k,

then δ∗k+1 satisfies (3.8). Moreover, (4.17) implies for ε small enough that (4.5) holds
for wk+1. Because r(w;μ, δ) is differentiable, Theorem 3.1 implies that K(w), the
Jacobian of r(w;μ, δ) with respect to w, is bounded in the vicinity of w∗

k. Together
with the definition of r∗k+1, the fact that δ∗k+1 = δ∗k, Steps 2 and 3 of Algorithm 1, and
Step 2 of Algorithm 2, this implies that (4.6)–(4.9) hold for δk+1, μk+1, and γk+1.

The proof finishes noting that w∗
k+1 = w∗

k because δ∗k+1 = δ∗k, so that by induction,
w∗ = w∗

k for all iterations k + 1, k + 2, . . .. The superlinear convergence of wk to w∗

then follows by induction from (4.17).
Note that in addition to the assumptions made in Theorem 3.6, we assume that

the barrier and steplength parameters satisfy μk < β‖wk − w∗
k‖1+τ and 1 − γk <

β‖wk − w∗
k‖1+τ for some τ ∈ (0, 1) and β > 0. These are standard assumptions

used to prove superlinear convergence of interior methods. They imply the barrier
and steplength parameters are updated fast enough. In addition, we assume that
‖δk − δ∗k‖ < β‖wk − w∗

k‖1+τ . This assumption implies that the distance between δk
and δ∗k is small compared to the distance between the current iterate wk and the
minimizer w∗. Note that in Part 3 of the proof of Theorem 4.1, we show that this
assumption will hold when the relaxation parameter update rule in Algorithm 1 is
applied for two or more iterations. Finally, the technical Assumption 4.9 simplifies
the proof and that is also satisfied whenever Algorithm 1 is applied for two or more
consecutive iterations.

5. Implementation details. In this section we discuss two practical aspects
of our implementation. First, to globalize the interior-point method, we perform a
backtracking linesearch on an augmented Lagrangian merit function (although other
globalization schemes could be used). The theoretical properties of this merit function
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have been analyzed by Moguerza and Prieto [14]. We also modify the Jacobian K(w)
as in [23] to ensure a sufficient descent direction for the augmented Lagrangian merit
function.

Second, we make use of a safeguard to the relaxation parameter update that
prevents the algorithm from converging to stationary points of the relaxed MPEC
that are not feasible with respect to MPEC. To see how this may happen, again
consider the example MPEC (3.3). The relaxed MPEC (with slack variables) is given
by

(5.1)

minimize
x1,x2,s1,s2,sc∈R

1
2 (x1 − a1)

2 + 1
2 (x2 − a2)

2

subject to s1 − x1 = δ1,

s2 − x2 = δ2,

sc + X1x2 = δc,

s ≥ 0.

For a1 = a2 = 0.01, δc = 1, and δ1 = δ2 = 0, the point

(x1, x2, s1, s2, sc) = (0.01, 0.01, 0.01, 0.01, 0.9999)

with multipliers (v1, v2, vc) = (0, 0, 0) is clearly a stationary point of (5.1), but it is
not feasible for (3.3). However, note that a point (x0, x1, x2, s0, s1, s2, sc) feasible for
(MPEC-δ) is feasible for (MPEC) if and only if

(5.2) (s0, s1, s2, sc) = (x0, x1 + δ1, x2 + δ2, δc)

(cf. (3.10a)). To ensure that (5.2) always holds at the limit point, we propose a
modification of the bound-constraint relaxations in Steps 2 and 3 of Algorithm 1.
The proposed modification is the following:

[δik+1]j = min(κ[δik]j , r
∗
k+1) if [zik+1]j > r∗k+1,

[δik+1]j = min([δik]j , [sik]j) if [zik+1]j ≤ r∗k+1,

[δck+1]j = min(κ[δck]j , r
∗
k+1) if [z1k+1]j < −r∗k+1 or [z2k+1]j < −r∗k+1,

[δck+1]j = min([δck]j , [sck]j) if [z1k+1]j ≥ −r∗k+1 and [z2k+1]j ≥ −r∗k+1

for i = 1, 2 and j = 1, . . . , n.
Thus, the above parameter update prevents the algorithm from converging to

spurious stationary points for the relaxed MPEC that are not stationary for the
MPEC.

Finally, it is possible to show that the local convergence results of previous sections
still hold when using both the globalization strategy for the interior point method and
the safeguard of the relaxation parameter update. But to simplify the exposition,
we have decided to leave these two aspects out of the local convergence analysis of
previous sections.

6. Numerical results. We illustrate in this section the numerical performance
of the interior-point relaxation algorithm on the MacMPEC test problem set [11].
The results confirm our local convergence analysis and show that our implementation
performs well in practice.
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The interior-point relaxation algorithm has been implemented as a Matlab pro-
gram. Problems from the MacMPEC test suite (coded in AMPL [11]) are accessed
via a Matlab MEX interface. Because the algorithm has been implemented using
dense linear algebra, we apply the method to a subset of 87 small- to medium-size
problems from the MacMPEC test suite.

We stop the algorithm under three different circumstances: (i) if the iteration
limit of 150 is exceeded; (ii) if the current iterate is a stationary point of (MPEC-δ∗),
i.e., if ‖r(wk; 0, δ

∗
k)‖ < 10−6(1 + ‖∇f(xk)‖) (cf. (4.4)); or (iii) if the steplength is too

small. We use the following parameter values for the barrier and relaxation updates:
τ = 0.3 and κ = 0.9.

Table 6.1 gives information regarding the performance of our algorithm on each
test problem. The first column indicates the name of the problem, the second and
third columns indicate the number of iterations and function evaluations, the fourth
column shows the final objective function value, the fifth and sixth columns show the
norm of the multiplier vector vc and the norm of the KKT residual of the nearby
relaxed MPEC (MPEC-δ∗) at the solution, and the last two columns indicate the exit
status of the algorithm. The exit flags are described in Table 6.2. The quantities
(δ∗1 , δ

∗
2 , δ

∗
c ) are the final values of the relaxation parameters.

The results seem to confirm that the global convergence safeguards proposed in
section 5 are effective in practice. In particular, the algorithm converges to a strongly
stationary point of (MPEC) for most of the test problems in the collection, that
is, flag1 = 1 for most of the problems. Moreover, note that all stationary points of
(MPEC-δ∗) found by the algorithm are also strongly stationary for the original MPEC;
that is, flag1 is never equal to 2. Finally, some of the problems on which our algorithm
fails are ill-posed according to [18, 4, 3]. For instance, ex9.2.2, qpec2, ralph1, scholtes4,
and tap-15 do not have a strongly stationary point, the pack problems have an empty
strictly feasible region, ralphmod is unbounded, and design-cent-3 is infeasible.

Table 6.1

Performance of the interior-point relaxation algorithm on the selected MacMPEC test problems.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
bar-truss-3 36 73 1.017e+04 4.521e+00 4.543e−04 1 1
bard1 13 27 1.700e+01 7.621e−01 4.170e−04 1 1
bard2 66 133 6.163e+03 1.036e+01 5.221e−05 1 1
bard3 16 33 -1.268e+01 3.625e−01 3.225e−06 1 1
bard1m 88 397 1.700e+01 1.504e−03 1.373e−04 1 0
bard2m 66 133 -6.598e+03 1.128e−04 5.444e−05 1 1
bard3m 16 33 -1.268e+01 1.350e+00 4.770e−06 1 1
bilevel1 16 33 5.000e+00 8.700e−02 1.382e−06 1 1
bilevel2 67 135 -6.600e+03 3.848e−01 3.174e−04 1 1
bilevel3 83 277 -8.636e+00 4.587e−03 8.352e−04 1 0
bilin 24 49 -1.215e−04 1.996e+00 1.513e−03 1 0
dempe 17 35 3.125e+01 5.002e+00 3.619e−06 1 1
design-cent-2 150 774 -3.182e−15 2.024e−05 3.749e+02 0 1
design-cent-3 150 2649 3.546e−02 1.930e+00 7.977e+00 0 1
design-cent-4 99 425 1.508e−18 3.616e−04 1.027e−08 1 1
ex9.1.1 19 39 -1.300e+01 1.087e+00 1.343e−03 1 0
ex9.1.2 14 29 -6.250e+00 1.902e+00 1.110e−03 1 0
ex9.1.3 39 80 -2.920e+01 5.357e+00 4.327e−03 1 1
ex9.1.4 33 80 -3.700e+01 1.999e+00 1.389e−07 1 1
ex9.1.5 11 23 -1.000e+00 3.674e+00 6.727e−06 1 1
ex9.1.6 22 47 -1.500e+01 1.000e+00 1.848e−05 1 0
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Table 6.1

Cont’d.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
ex9.1.7 87 310 -2.600e+01 2.001e+00 1.497e−03 1 0
ex9.1.8 102 441 -3.250e+00 3.180e+00 1.694e−01 1 0
ex9.1.9 26 63 3.111e+00 2.678e+00 3.081e−03 1 1
ex9.1.10 102 441 -3.250e+00 3.180e+00 1.694e−01 1 0
ex9.2.1 19 39 1.700e+01 2.881e+00 7.365e−04 1 0
ex9.2.2 150 655 1.000e+02 7.374e+03 1.402e−02 0 1
ex9.2.3 16 33 5.000e+00 4.700e−09 2.093e−08 1 1
ex9.2.4 10 21 5.000e−01 1.000e+00 1.778e−08 1 1
ex9.2.5 13 27 9.000e+00 6.185e+00 1.646e−06 1 1
ex9.2.6 66 239 -1.000e+00 7.071e−01 1.981e−02 1 0
ex9.2.7 19 39 1.700e+01 2.881e+00 7.365e−04 1 0
ex9.2.8 12 25 1.500e+00 5.000e−01 1.080e−06 1 1
ex9.2.9 13 27 2.000e+00 1.987e+00 4.019e−08 1 1
flp2 22 49 1.076e−17 1.517e−05 3.595e−04 1 1
flp4-1 35 75 5.411e−07 1.315e−06 2.607e−06 1 1
flp4-2 41 89 7.376e−07 4.076e−06 8.233e−06 1 1
flp4-3 52 126 1.018e−06 1.913e−06 3.905e−06 1 1
flp4-4 56 117 2.456e−06 7.803e−07 8.825e−06 1 1
gauvin 11 23 2.000e+01 2.500e−01 8.152e−07 1 1
hakonsen 150 351 1.113e+01 4.898e−05 2.825e−01 0 1
hs044-i 83 279 3.765e+01 2.271e+00 1.344e−01 1 0
incid-set1-8 54 117 5.016e−06 1.722e−04 3.536e−06 1 1
incid-set1c-8 101 210 4.554e−06 9.816e−04 3.754e−06 1 1
incid-set2-8 149 302 8.929e+00 2.069e+03 2.363e+04 7 1
jr1 8 17 5.000e−01 5.779e−09 1.259e−08 1 1
jr2 8 17 5.000e−01 2.000e+00 2.282e−08 1 1
kth1 9 19 3.950e−07 7.046e−07 5.989e−07 1 1
kth2 8 17 1.432e−09 1.355e−07 2.180e−07 1 1
kth3 7 15 5.000e−01 1.000e+00 9.131e−07 1 1
liswet1-050 36 89 1.399e−02 2.552e−09 5.998e−09 1 1
nash1 26 53 1.339e−07 2.499e−04 3.930e−04 1 1
outrata31 88 184 3.208e+00 3.234e+01 3.653e−07 1 0
outrata32 86 177 3.449e+00 6.586e+01 4.908e−07 1 0
outrata33 83 174 4.604e+00 6.089e+02 2.808e−06 1 0
outrata34 107 218 6.593e+00 8.386e+00 1.549e−06 1 0
pack-comp1-8 97 818 6.240e−01 5.388e+01 5.923e+04 7 1
pack-comp1c-8 126 300 5.741e−01 1.308e+01 2.099e+04 7 0
pack-comp1p-8 135 347 -3.649e+04 3.230e+03 1.383e+05 7 1
pack-comp2-8 38 82 7.724e−01 2.677e+01 1.039e+04 7 1
pack-comp2c-8 150 309 6.537e−01 6.595e+00 2.979e+04 0 1
pack-rig1-8 150 1109 6.623e−01 6.294e+00 1.562e+03 0 1
pack-rig1c-8 61 174 6.013e−01 5.803e+00 4.770e+03 7 1
pack-rig1p-8 150 948 -4.048e+01 1.621e+01 4.220e+03 0 0
pack-rig2-8 150 307 7.804e−01 8.259e−09 9.463e−04 0 1
pack-rig2c-8 75 289 6.046e−01 5.751e+00 4.974e+03 7 0
pack-rig2p-8 147 403 -1.573e+02 1.093e+00 2.086e+02 7 1
portfl-i-1 28 59 2.096e−06 4.971e−04 5.158e−04 1 1
portfl-i-2 30 61 1.099e−06 8.256e−03 2.070e−03 1 1
portfl-i-3 31 64 1.743e−06 3.498e−02 1.864e−04 1 1
portfl-i-4 31 64 2.755e−06 1.418e−02 4.518e−04 1 1
portfl-i-6 28 58 2.394e−06 3.893e−02 4.654e−04 1 1
qpec-100-1 80 163 9.900e−02 1.762e+01 7.324e−06 1 1
qpec1 10 21 8.000e+01 3.044e−07 5.138e−07 1 1
qpec2 150 303 4.500e+01 9.669e+04 2.425e−02 0 1
ralph1 150 303 -1.563e−05 3.191e+04 1.885e−03 0 1
ralph2 15 31 -2.228e−07 2.001e+00 3.071e−07 1 1
ralphmod 75 151 -5.726e+02 8.219e+02 1.167e+02 7 0
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Table 6.1

Cont’d.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
scholtes1 10 21 2.000e+00 1.008e−08 2.302e−08 1 1
scholtes2 21 43 1.500e+01 6.894e−06 2.881e−06 1 1
scholtes3 8 18 5.000e−01 1.000e+00 5.044e−07 1 1
scholtes4 150 301 -4.994e−05 3.994e+04 3.895e−03 0 1
scholtes5 8 17 1.000e+00 1.870e+00 1.277e−06 1 1
sl1 30 61 1.003e−04 3.337e−07 1.715e−05 1 1
stackelberg1 12 25 -3.267e+03 8.998e−01 5.536e−06 1 1
tap-09 106 320 1.546e+02 1.964e−01 8.807e−04 1 0
tap-15 136 300 3.131e+02 2.664e−01 3.389e−02 7 1

Table 6.2

Exit flags in Table 6.1. The second exit flag indicates when the final relaxation parameters
(δ∗c , δ

∗
1 , δ

∗
2) satisfy the complementarity condition given by (3.9).

flag1 Status
0 Terminated by iteration limit (150)
1 Found stationary point of (MPEC-δ∗) and

strongly stationary point of (MPEC)
2 Found stationary point of (MPEC-δ∗) but

not strongly stationary point of (MPEC)
7 Terminated because steplength too small

(αk < 10−12) or descent direction not found

flag2 Status
0 max(δ∗c , δ

∗
i ) = 0

1 max(δ∗c , δ
∗
i ) > 0

In addition, we have observed that the algorithm is particularly efficient on those
problems for which the iterates converge to a strongly stationary point that satisfies
the MPEC-WSCS and -SSOSC. For these problems, in particular, the final relaxation
parameter satisfy max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 and the iterates converge at a superlinear

rate. On the other hand, for those problems for which the algorithm converges to a
strongly stationary point that does not satisfy the MPEC-WSCS and -SSOSC, there is
a zero or very small component of max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
, and the iterates converge only

at a linear rate. In other words, when max
(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 (i.e., flag2 = 1), the

condition number of the KKT matrix remains bounded and the algorithm converges
superlinearly. On the other hand, when max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

= 0 (i.e., flag2 = 0),
the condition number of the KKT matrix grows large, and the algorithm converges
only linearly.

This behavior can be observed in Figure 6.1, which depicts the evolution of ‖r∗k‖
and the minimum value of the vector max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

for two problems of the
MacMPEC collection. Both vertical axes are in a logarithmic (base 10) scale. The
first subfigure shows the last eight iterates generated by the algorithm for problem
ex9.2.4 (which confirms max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0). The second subfigure shows the

last 11 iterates generated by the algorithm for problem ex9.2.7 (which confirms a
numerically zero component of max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
.

Moreover, the numerical results confirm the relevance of our relaxing the MPEC-
SCS assumption in our analysis. In particular, there are eight problems (approxi-
mately 10% of the total) for which the MPEC-SCS does not hold at the minimizer
(although MPEC-WSCS and -SSOSC hold) and yet max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 in the

limit. Likewise, we have confirmed that for all problems for which the minimum value
of the vector max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

is zero, the algorithm converges to points where
the MPEC-WSCS or -SSOSC do not hold.



608 DEMIGUEL, FRIEDLANDER, NOGALES, AND SCHOLTES

4 5 6 7 8 9 10 11
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

Problem with flag2=1

4 5 6 7 8 9 10 11

10
−0.18

10
−0.17

10
−0.16

10
−0.15

10
−0.14

10
−0.13

10
−0.12

10
−0.11

(a) Problem ex9.2.4

10 11 12 13 14 15 16 17 18 19 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

Problem with flag2=0

10 11 12 13 14 15 16 17 18 19 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) Problem ex9.2.7

Fig. 6.1. Final iterations of two problems from the MacMPEC test suite. Each graph
shows the KKT residual ‖r∗k‖ (solid line and left axis) and the minimum value of the vector

max
(
δ∗c ,min(δ∗1 , δ

∗
2)

)
(dashed line and right axis) against the iteration count.
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