Offsetting the Incentives:
Benefits of Benchmarking in Money Management*

Suleyman Basak
London Business School and CEPR
Regents Park
London NW1 4SA
United Kingdom
Tel: 44 (0)20 7706-6847
Fax: 44 (0)20 7724-3317
E-mail: sbasak@london.edu

Anna Pavlova
London Business School and CEPR
Regents Park
London NW1 4SA
United Kingdom
Tel: 44 (0)20 7000-8218
Fax: 44 (0)20 7724-3317
E-mail: apavlova@london.edu

Alex Shapiro
Stern School of Business
New York University
Fax: (212) 995-4233
E-mail: ashapiro@stern.nyu.edu

This draft: April 3, 2007

*We would like to thank colleagues at MIT Sloan, NYU Stern, and LBS, Glenn Ellison, Mike Gallmeyer, David Musto, Brad Paye, Ludovic Phalippou, Paola Sapienza, Lucie Tepla, Peter Tufano, Dimitri Vayanos, Jean-Luc Vila, and the seminar participants at Bank Gutmann, Bank of England, BI, Bilkent, Copenhagen, Harvard, HEC, LBS, LSE, MIT, NHH, NYU, Northwestern, Rutgers, UCLA, UNC, USI Lugano, Washington St. Louis, Yale, ASAP conference, American Finance Association, Blaise Pascal International Conference, European Finance Association, and Econometric Society winter meetings for their comments. We are grateful to Dmitry Makarov for helpful research assistance. This paper draws upon the material from our earlier working paper, circulated under the title “Offsetting the Incentives: Risk Shifting and Benefits of Benchmarking in Money Management” (2005, CEPR DP 5006). Research support from the Q Group is gratefully acknowledged. All errors are solely our responsibility.
Abstract

Money managers are rewarded for increasing the value of assets under management. This gives a manager an implicit incentive to exploit the well-documented positive fund-flows to relative-performance relationship by manipulating her risk exposure. The misaligned incentives create potentially significant deviations of the manager’s policy from that desired by fund investors. In the context of a familiar continuous-time portfolio choice model, we demonstrate how a simple risk management practice that accounts for benchmarking can ameliorate the adverse effects of managerial incentives. Our results contrast with the conventional view that benchmarking a fund manager is not in the best interest of investors.

JEL Classifications: G11, G20, D60, D81.
Keywords: Benchmarking, Fund Flows, Implicit Incentives, Risk Taking, Risk Management, Portfolio Choice.
1. Introduction

Capital inflows into professionally-managed funds following good performance relative to an index and outflows following bad performance provide a powerful incentive to fund managers to account for their indexes in their portfolio choice. Those funds that do not invest in their index are at risk of being marginalized by competition. A frequently cited reason for buying rather than selling clearly overpriced stocks in 2000 by mutual funds and pension funds was the fear of sizable capital outflows.

Empirical research has found the fund-flows to performance relationship to be (i) increasing and (ii) convex over a range of funds' performance relative to an index. Chevalier and Ellison (1997), Ippolito (1992), Sirri and Tufano (1998) present evidence for mutual funds and Del Guercio and Tkac (2002) for pension funds. We consider a simple increasing and nonconcave flow-performance relationship and solve for the optimal dynamic portfolio allocation of a risk-averse manager. If the manager is unrestricted in her portfolio choice, she has an incentive to boost the riskiness of her portfolio when underperforming her index and lock in her gains upon catching up (Basak, Pavlova, and Shapiro (2007)). While being a useful theoretical benchmark, however, this policy generates much larger tracking errors (deviations of the manager’s portfolio from her index) than the ones observed in practice. In this paper, we consider a more realistic economic setting in which investment choices of the manager are restricted.

Towards this, we consider risk management practices that account for benchmarking. Establishing an economic role for such widely observed practices is also of independent theoretical interest given the arguments made against them in the academic literature (Roll (1992), Admati and Pfleiderer (1997)). We focus on a simple constraint, referred to as a “minimum performance constraint” or a “benchmarking restriction,” which prohibits a shortfall in the manager’s return relative to a reference portfolio to exceed a pre-specified level over a certain horizon. If a manager violates the constraint, she incurs a large penalty; in our model, we assume that she simply loses her job.1 This simple, yet versatile, constraint is also closely related to some popular risk management practices such as stop-loss limits, portfolio insurance, value-at-risk (VaR) and tracking error limits. Such a constraint can be either explicitly or implicitly imposed on the manager by her superiors. The parameter governing the stringency of the benchmarking restriction in our model is the manager’s allowed shortfall relative to the benchmark. We demonstrate that as the (appropriate) benchmarking restriction becomes more stringent, the impact of the fund-flows induced incentives on the manager’s policy weakens, and beyond a certain allowed shortfall the convexity in the flow-performance relationship ceases to have an effect on the manager’s optimal policy.

Absent the benchmarking restriction, the asset allocation choice of the manager is not necessarily

1See, for example, Del Guercio and Tkac and their references to surveys by Greenwich Associates for evidence on underperformance-related manager termination decisions.
in the best interest of fund investors, who care about the risk and return of their investment and not about attracting capital into the fund. Moreover, the risk attitudes of fund investors need not coincide with that of the fund manager. We compare the manager’s policy when acting in the best interest of fund investors with when following an asset allocation policy optimal from her viewpoint. A simple calibration reveals that the costs of misaligned incentives could be quite significant. Most of our cost estimates, measured in units of an investor’s initial wealth, are within the 2–7% range. At a boundary point of our parameter range, in which the investor’s relative risk aversion is 2 and the manager’s is 0.5, we find the cost to the investor to be as high as 54% of his initial wealth. We show that a benchmark that is less risky than the index can temper deviations from the investors’ desired risk exposure in states where the manager is tempted to deviate the most, and hence is beneficial. For example, as a result of imposing a benchmark consisting of 5% in the stock market and 95% in the money market, most of the loss of 54% in the earlier example can be recouped. Benchmarking is shown to be beneficial to the investor across most of our calibrations, ranging from 3% to 8% in units of the investor’s initial wealth. Our results thus provide a rationale for benchmarking-type restrictions observed in this industry.

Our work is related to the literature on (adverse) consequences of benchmarking. In a mean-variance setting, Roll (1992) argues that benchmarking a money manager to an index results in her choosing a portfolio that is not mean-variance efficient. Admati and Pfleiderer (1997), in a similar context but with an asymmetrically informed investor and portfolio manager, also advocate against benchmarking the manager, and particularly linking compensation to the types of benchmarks observed in practice. The spirit of these results is that, in an economy without fund-flows induced considerations, benchmarking induces a manager to deviate from choosing a mean-variance efficient portfolio that is desired by investors (with mean-variance preferences). Our viewpoint is that money managers are concerned with attracting fund inflows, which we accept as a fact of life. The role of our benchmarking restriction is to (partially) alleviate the adverse effects of the ensuing managerial incentives, thus benefitting investors.

There is a strand of literature, growing out of Bhattacharya and Pfleiderer (1985), investigating optimal contracting in the context of delegated portfolio management, where the manager typically has superior information or ability, or expends costly effort. In this vein is also Starks (1987). Dybvig, Farnsworth, and Carpenter (2001), like us, consider restrictions on the investment opportunity set (trading strategies) as part of an optimal contract. In a dynamic portfolio choice framework, Cadenillas, Cvitanić, and Zapatero (2004) consider a principal-agent problem in which a risk-averse manager compensated with options chooses the riskiness of the projects she invests in. Our focus in this paper is different. Instead of solving for an optimal contract, we look for (suboptimal but) practical instruments aimed at counteracting the manager’s adverse incentives. This position is along the lines of Bogle (2005) who convincingly argues that “relatively small individual owners are virtually powerless in mutual fund America,” and hence cannot freely tailor a
manager’s contract. In that spirit, Jorion (2003) further analyzes Roll’s static setup and considers how imposing additional constraints can move optimal portfolios closer to mean-variance efficiency. Brennan (1993) and Gómez and Zapatero (2003) study the equilibrium implications of Roll-type setting and derive a two-beta CAPM. Closer to our message is van Binsbergen, Brandt and Koijen (2006), who also advocate the use of benchmarking in money management. Their way of addressing benchmarking, however, differs from ours in that they model managers as deriving utility from the ratio of their terminal portfolio value over a benchmark. Hence, unlike in our analysis, the managers care only about relative performance, and not absolute. The ensuing effects of the benchmark on the managers’ behavior are also different. Since managers are risk averse in van Binsbergen et. al, they try to reduce the variability of the portfolio-benchmark ratio even when outperforming the benchmark. In our setting, the manager is affected disproportionately more when her performance relative to the benchmark is poor.

Basak, Pavlova, and Shapiro (2007) examine fund-flows induced incentives of fund managers. The special case of our manager’s choice being unrestricted coincides with theirs. However, they do not examine the effects of restricting the manager’s investment policy, which is the goal of this paper. There is also a recent literature examining benchmarking absent fund-flows considerations and adverse incentives. In a dynamic setting like ours, Teplá (2001), and Basak, Shapiro, and Teplá (2006) study the optimal policies of an agent subject to a benchmarking restriction. Our manager’s decision that incorporates simultaneously both the fund-flows and benchmarking considerations is considerably more complex. Consequently, the insights of our analysis here cannot be gained from examining the benchmarking restriction or the fund-flows induced incentives alone.

The rest of the paper is organized as follows. Section 2 describes the model primitives and discusses the fund-flows induced implicit incentives and the benchmarking restriction. Section 3 derives the manager’s optimal policy under benchmarking, and Section 4 evaluates cost/benefits of benchmarking to investors. Section 5 concludes, and the appendices provide the proofs and other material omitted in the body of the paper.

2. The Economic Setting

2.1 Economic Primitives

We adopt the familiar Black and Scholes (1973) economy for the financial investment opportunities. We consider a continuous-time, finite horizon, $[0, T]$ economy, in which uncertainty is driven by a Brownian motion w. Available for investing are a riskless money market account and a risky stock. The money market provides a constant interest rate r. The stock price, S, follows a
geometric Brownian motion

\[dS_t = \mu S_t dt + \sigma S_t dw_t, \]

where the stock mean return, \(\mu \), and volatility, \(\sigma \), are constant.

We consider a fund manager who dynamically allocates the fund’s assets, initially valued at \(W_0 \), between the risky stock and the money market. The manager’s compensation, due at the horizon \(T \), is proportional to the terminal value of assets under management. The manager is guided by constant relative risk aversion (CRRA) preferences, defined over the value of assets under management at time \(t \):

\[u(A_t) = \frac{A_t^{1-\gamma}}{1-\gamma}, \quad \gamma > 0. \]

This formulation of the manager’s objective is consistent with the linear fee structure prevalent in the mutual fund industry. Her portfolio value process, \(W_t \), follows

\[dW_t = [(1 - \theta_t) r + \theta_t \mu] W_t dt + \theta_t \sigma W_t dw_t, \]

where \(\theta \) denotes the fraction of the portfolio invested in the risky stock, or the risk exposure. Absent flows into the fund, the time-\(T \) value of assets under management \(A_T \) coincides with the market value of the manager’s portfolio \(W_T \). In this case, maximizing the expected objective function (1) subject to (2) yields the manager’s optimal risk exposure, \(\theta_N \), henceforth the normal risk exposure, given by (Merton (1971)):

\[\theta_N = \frac{1 - \gamma}{\gamma} \frac{\mu - r}{\sigma^2}. \]

The manager’s performance triggering fund flows is evaluated relative to an index, \(Y_t \), a value-weighted portfolio with a fraction \(\beta \) invested in the stock market and \((1 - \beta)\) in the money market, following

\[dY_t = (1 - \beta) r Y_t dt + \beta (Y_t/S_t) dS_t = [(1 - \beta) r + \beta \mu] Y_t dt + \beta \sigma Y_t dw_t. \]

We define the risk exposure of the index portfolio, \(\theta^Y \), as the fraction of the index invested in the risky asset:

\[\theta^Y_t = \beta. \]

We denote the (continuously compounded) returns on the manager’s portfolio and on the index over the period \([0, t]\) by \(R^W_t = \ln \frac{W_t}{W_0} \) and \(R^Y_t = \ln \frac{Y_t}{Y_0} \), respectively, where we normalize \(Y_0 = W_0 \), without loss of generality. It turns out that in our analysis we need to distinguish between two (mirror) subcases depending on whether the manager normally desires higher risk exposure than that of her index (\(\theta^N > \theta^Y \)) or not (\(\theta^N < \theta^Y \)). We refer to the former as economies (a) and the latter as economies (b). For expositional simplicity, in the body of the paper we focus mainly on economies (a), maintaining the assumption that \(\theta^N > \theta^Y \). Note that this condition is imposed on exogenous quantities, and is likely to be satisfied when the market risk premium is high, volatility is low, or the risk aversion of the manager is low. In economies (b), the solution to the manager’s
2.2 Fund Flows and Implicit Incentives

Tying the compensation to performance provides the manager with an *explicit incentive* to increase the final value of the portfolio W_T. Perhaps just as significant to the manager’s choices are *implicit incentives* due to inflows or outflows of funds in response to her performance relative to the index. Well-performing managers are rewarded further by attracting new capital into a fund and thereby increasing their fees, while poor-performing managers are penalized. We model this by augmenting the fund time-T asset value by the quantity f_T, representing fund flows, so that

$$A_T = W_T f_T.$$

The flow rate f_T is understood in the proportion-of-portfolio terms; for example if $f_T > 1$, the manager gets an inflow, otherwise if $f_T < 1$, gets an outflow.

The empirical literature has suggested several specifications of the functional form for the flow-performance relationship f_T. Chevalier and Ellison (1997) argue that for mutual funds it resembles a bull spread or a collar of option pricing: a flat segment when managers are underperforming, followed by an upward-sloping approximately linear segment straddling the break-even relative performance, and then again a flat one. Additionally, for extreme values of outperformance, the relationship becomes increasing and convex. Sirri and Tufano (1998) find that as a function of the fund’s rank, the relationship is relatively flat for underperformers but increasing and convex for outperformers. For pension funds, Del Guercio and Tkac (2002) document that inflows are triggered when managers beat an index; the magnitude of excess returns is not significantly related to flow. While different studies emphasize different features of the flow-performance relationship, they all agree on two distinguishing characteristics: the flow-performance function is (i) increasing and (ii) exhibits convexities.

The function we consider here is the simplest possible one that captures above characteristics in reduced-form. There are two fund flow rates: high, f_H, and low, f_L: $f_H \geq f_L > 0$. At the terminal date, the manager receives fund flows at rate

$$f_T = \begin{cases}
 f_L & \text{if } R_T^w - R_T^y < \eta, \\
 f_H & \text{if } R_T^w - R_T^y \geq \eta.
\end{cases}$$

(3)

The pivotal difference in returns η, which we will call the *flow threshold*, can be either positive, zero, or negative. While being consistent with the findings of Del Guercio and Tkac, this form of the flows for performance relationship may appear somewhat simplistic. Nonetheless, it is capable of capturing most of the implications of more complex functions for the manager’s behavior. Basak, Pavlova, and Shapiro (2007) consider a variety of such flow-performance relationships (collar-type,}
linear-convex, linear-linear, etc.), some of which they interpret as part of the manager’s compensation package, and show that the manager’s behavior is quite similar across all specifications, as long as the functions are increasing and exhibit convexities. They argue that the presence of a convexity is the first-order effect; the exact form of the flow function around the convexity ends up either playing a minor role or being completely immaterial for the manager’s optimization. By adopting our simple two-tier flow function we thus avoid their computational difficulties and distill their main insights.

In the presence of implicit incentives, there are two considerations affecting the manager’s behavior. First is her attitude towards risk, driving the normal policy, second is the risk-shifting incentive induced by nonconcavities due to fund flows. To understand the latter, note that the nonconcave payoff to the manager can be expressed as

\[A_T = f_L W_T + (f_H - f_L) W_T \mathbb{1}_{\{R_W - Y \geq \eta\}}, \]

where the first term is a linear function of the terminal portfolio value, and the second is a position in \(f_H - f_L \) “asset-or-nothing” binary options with a stochastic strike. When the manager is following her normal policy, her optimal portfolio value process is a geometric Brownian motion, and hence an exact pricing formula for the binary option is readily available. In particular, the volatility of the underlying, \(W/Y \), depends on the difference between the volatility of the manager’s portfolio and that of the index, and is given by \(\sigma|\theta_t^N - \theta_t^Y| \).\(^3\) As emphasized in the vast risk-shifting literature (Jensen and Meckling (1976)), to increase the value of her compensation, the manager has an incentive to deviate from her normal policy by boosting the volatility of the underlying. Note that an increase in the volatility (or risk exposure) of the manager’s portfolio \(W \), \(\sigma \theta_t \), does not always result in an increase of the volatility of the underlying \(W/Y \). This motivates us to treat economies (a) and (b) separately; in the latter, the manager chooses to decrease her portfolio volatility to boost the value of her payoff.

2.3 A Benchmarking Restriction

Our final ingredient describing a realistic investment environment of a fund manager involves risk management restrictions either explicitly or implicitly imposed on her by her superiors. Such restrictions limit the allowed shortfall in the manager’s portfolio, measured in absolute terms or relative to a pre-specified benchmark. While a slight underperformance relative to the benchmark can be ascribed to “bad luck,” a significant underperformance is likely to have more serious consequences.

\(^3\)The binary option with the payoff \(W_T \mathbb{1}_{\{R_W^T \geq R_Y^T + \eta\}} = W_T \mathbb{1}_{\{W_T \geq e^{\eta Y_T}\}} \) is essentially an option on the ratio \(W/Y \). The properties of such an option closely resemble those of an exchange option. For discussion of binary and exchange options, see Hull (2005).
To capture this, we consider a *benchmarking restriction* of the following form

\[R^W_T - R^X_T \geq \varepsilon, \]

(4)

where \(X \) is a value-weighted portfolio, with a fraction \(\delta \) invested in the stock market and \((1 - \delta)\) in the money market, and \(\varepsilon \) is the manager’s *allowed shortfall*.\(^4\) For example, \(\varepsilon = -\infty \) means that the manager is completely unrestricted, while \(\varepsilon = -5\% \) implies that the maximal shortfall of the manager’s return over that of the benchmark may not exceed 5%. When the benchmark is simply the money market, this restriction is a familiar stop-loss limit, routinely imposed on professional traders. By considering a stochastic benchmark \(X \), we make the restriction more general – capable of also capturing, for example, a termination rule for managers whose performance is unsatisfactory. Termination of money managers is typically linked to underperformance relative to a benchmark, rather than underperformance in absolute terms.

Our hard constraint can easily be generalized to a softer tracking error-type constraint, which may permit exceeding the allowed shortfall with some probability or allow violating the benchmarking restriction at a cost. Alternatively, our restriction can be interpreted as a limiting case of a VaR constraint. A VaR constraint specifies a floor (in our case, possibly stochastic) which the manager’s portfolio has to exceed with a pre-specified probability. Our constraint establishes a floor which has to be maintained at all times. In that sense, it is closer to portfolio insurance. For simplicity, we do not consider soft constraints in this paper. Finally, it is of independent interest to explore the effects of benchmarking in light of the well-known theoretical work cautioning against the use of benchmarking in money management (Roll (1992), Admati and Pfleiderer (1997)).

Anticipating our results, to alleviate the effects of implicit incentives, we require that the risk exposure of the benchmark, \(\theta^X = \delta \), is less than that of the index, \(\theta^Y \). To simplify our presentation below, we further restrict the risk exposure of the benchmark to be below the manager’s normal exposure. To summarize, we assume that \(\theta^X \leq \min\{\theta^N, \theta^Y\} \). In the sequel, we comment on the manager’s optimal behavior when these two conditions are violated.

3. Unwinding the Manager’s Incentives with Benchmarking

The optimization problem of the manager is given by:

\[
\max_{\theta} E[u(A_T)]
\]

subject to the budget constraint (2), the flow-performance relationship (3), and the benchmarking restriction (4).

\(^4\)We normalize \(X_0 = W_0 \), without loss of generality. Moreover, the benchmark \(X \) is not the same as the index \(Y \) for generality, and also since the index triggering fund flows from retail investors need not coincide with the benchmark used by the manager’s superiors.
As is well known (e.g., Karatzas and Shreve (1998)), the driving economic state variable in an agent’s dynamic investment problem is the so-called state price density. In the complete-markets Black and Scholes (1973) economy, this state price density process, \(\xi \), is given by \(d\xi = -\kappa \xi dt - \kappa \xi dw_t \), where \(\kappa \equiv (\mu - r)/\sigma \) is the constant market price of risk in the economy. Proposition 1 characterizes the solution to the manager’s problem (5) in terms of the primitive economic state variable \(\xi \).

Proposition 1. The optimal risk exposure and terminal portfolio value of a fund manager facing implicit incentives and a benchmarking restriction are given by

\[
\theta^*_t = \theta^N + \left[\mathcal{N}(d(\hat{\kappa}, \tilde{\xi})) - \mathcal{N}(d(\hat{\kappa}, \xi_{YH})) \right] (\gamma/\hat{\kappa} - 1) B \theta^N Z(\hat{\kappa}) \xi_t^{1/\hat{\kappa}} / W_t^* \chi_{a_2, a_3, a_4} \\
+ \mathcal{N}(d(\hat{\kappa}, \tilde{\xi}))(\gamma/\hat{\kappa} - 1) C \theta^N Z(\hat{\kappa}) \xi_t^{1/\hat{\kappa}} / W_t^* \\
+ \left\{ \phi(d(\hat{\kappa}, \tilde{\xi})) - \phi(d(\hat{\kappa}, \xi_{YH})) \right\} B Z(\hat{\kappa}) \xi_t^{1/\hat{\kappa}} \chi_{a_2, a_3, a_4} \\
+ \left[\phi(d(\gamma, \tilde{\xi})) f_H^{1/(\gamma-1)} + \left(\phi(d(\gamma, \tilde{\xi})) - \phi(d(\gamma, \xi_0)) \right) f_L^{1/(\gamma-1)} \chi_{a_4} \right] Z(\gamma) (y \xi_t)^{-1/(\gamma-1)} \\
- \phi(d(\gamma, \tilde{\xi})) C Z(\hat{\kappa}) \xi_t^{1/\hat{\kappa}} \right\} \gamma \theta^N / (\kappa \sqrt{T-t} W_t^*),
\]

\[
W_t^* = \frac{1}{J_T} J \left(\frac{\psi \tau}{J_T} \xi_T \right) \chi_{\xi_T < \tilde{\xi}} + \eta Y_T \chi_{\xi_T < \tilde{\xi}; a_2, a_3, a_4} + \frac{1}{J_T} J \left(\frac{\psi \tau}{J_T} \xi_T \right) \chi_{\xi_T < \tilde{\xi}; a_4} + e^{\xi T} X_T \chi_{\xi_T \leq \tilde{\xi}},
\]

where the arguments of the indicator function \(\chi_{\{\cdot\}} \) refer to the subeconomies identified below, \(y \) solves \(E[\xi_T W_T^+] = W_0 \), \(J(\cdot) \) is the inverse function of \(u'(\cdot) \), \(\mathcal{N}(\cdot) \) and \(\phi(\cdot) \) the standard-normal cumulative distribution and density functions respectively, \(\hat{\kappa} = \kappa / (\beta \sigma) \), \(\tilde{\xi} = \kappa / (\delta \sigma) \), \(d(v, x) = (\ln x/\xi_t + (r + (2-v)/(2v) \kappa^2) (T-t)) / (\kappa \sqrt{T-t}) \), \(B = W_0 e^{\left[\eta / T + (1-\beta) r + \beta [(\mu - \beta \sigma^2 / 2 - (r+\kappa^2/2) \sigma / \kappa)] T \right]} \),

\[
C = W_0 \left[e^{\left[\xi / T + (1-\beta) r + \beta[(\mu - \beta \sigma^2 / 2 - (r + \kappa^2/2) \sigma / \kappa)] T \right]} \right], Z(v) = e^{-\frac{1}{2} (v + \frac{\sigma^2}{2}) (T-t)}, g(\xi) = (\gamma (y \xi / f_L)^{-1/\gamma} - (\xi^{1/\gamma}/(B f_H))^{-1} (1-1) + y B)^{-1/\gamma},
\]

\[
\xi_{YH} = (y B^{1-1/\gamma}, \xi_{XY} = (y B^{\gamma / f_H^{1-\gamma}})^{1/(\gamma-1)}, \xi_{XL} = (y C^{1-1/\gamma}, \xi_{XY} = (B / C)^{\gamma / (\sigma / (\gamma-1))}, \xi_a > \xi_{YH} satisfies g(\xi_a) = 0, and W_t^* is as given in the proof.
\]

There are four possible subeconomies \(a_1 \)–\(a_4 \), as summarized in Table 1, with \(\tilde{\xi} = \xi_{YH} \) in \(a_1 \) and \(\tilde{\xi} = \xi_{YH} \) otherwise; \(\tilde{\xi} = \xi_{XY} \) in \(a_2 \) and \(\tilde{\xi} = \xi_a \) in \(a_3, a_4 \); \(\tilde{\xi} = \xi_{XY} \), \(\xi_a, \xi_{XL} \), in \(a_1, a_2, a_3, a_4 \), respectively.

Proposition 1 reveals that the manager’s optimal behavior has a different pattern (economies \(a_1 \)–\(a_4 \)) depending on the stringency of the benchmarking restriction, as governed by the allowed shortfall \(\varepsilon \). While the expressions in the proposition appear complicated, the intuition behind the manager’s optimal policy is simple, and can be articulated in two easy steps. To best highlight this, Figure 1 plots the manager’s optimal risk exposure as a function of her performance relative to the index for varying levels of the allowed shortfall. First, consider the dotted plot that corresponds to the case of the benchmarking restriction being infinitely loose, and hence the manager being effectively unrestricted. Note that when underperforming the index \((R_t^W - R_t^Y < \eta) \), the manager
attempts to avoid getting a low flow \(f_L \) at the terminal date by increasing her risk exposure, and when outperforming \((R^W_t - R^Y_t > \eta)\), she “locks in” her gains. Because of her risk aversion, however, the increase in the poor-performing manager’s risk exposure is bounded. The risk exposure reaches its maximum when the manager is sufficiently behind the index, where a further scaling up the size of her gamble required to catch up with the index becomes prohibitively risky. Nonetheless, when unrestricted, the manager significantly increases her tracking error in the underperformance region, which is not in the best interest of fund investors whose utility is unaffected by fund flows.

![Figure 1. The effects of the benchmarking restriction.](image)

The dotted plot corresponds to the case where the manager is unrestricted \((\varepsilon = -\infty)\). The remaining plots are for the varying degrees of the stringency of the benchmarking restriction \((\varepsilon > -\infty)\).

Second, consider the effects of a potentially binding benchmarking restriction \((\varepsilon > -\infty)\). The figure underscores the importance of imposing a state-dependent restriction on the manager for the purposes of reducing her implicit incentives-induced tendencies to gamble. In the states in which the manager is outperforming the index, the benchmarking restriction does not drastically affect her behavior. In contrast, in the underperformance states, the benchmark has a significant effect by forcing the manager to tilt her risk exposure closer towards the risk exposure of the benchmark \(X\). Since by construction, the benchmark we propose is safer than both the manager’s normal policy and the index, it acts in the direction of reducing the manager’s risk exposure. The lever controlling how much power the benchmarking restriction has in reducing the risk exposure is the allowed shortfall \(\varepsilon\). As \(\varepsilon\) increases, the manager’s risk exposure is forced to approach that of the benchmark, converging to the latter when \(\varepsilon\) reaches its upper bound \((\varepsilon = 0)\). It is this lever \(\varepsilon\) that gives rise to a range of subcases, as reported in Table 1 of Proposition 1. For the subcases corresponding to a very low \(\varepsilon\) (economies \(a4\)), the manager is allowed to underperform

5 The figure is typical. Parameter values are chosen for demonstrative purposes. Their values are \(\gamma = 1.0, f_L = 0.85, f_H = 1.15, \beta = 1.0, \eta = -0.1, \mu = 0.08, r = 0.01, \sigma = 0.19, W_0 = 1, t = 0.8, T = 1, \varepsilon_{\text{low}} = -1.0, \varepsilon_{\text{med}} = -0.5, \varepsilon_{\text{high}} = -0.05,\) and \(\delta = 0.8\).
the benchmark by a large amount, and so the benchmarking restriction has practically no effect in the range where the manager gambles (dash-dotted plot in Figure 1). By increasing \(\varepsilon \) (economy a3), we move to the subeconomy in which the benchmarking restriction is strong enough to target the risk-exposure humps induced by implicit incentives (dashed plot). Finally, for high enough \(\varepsilon \) (economies a1, a2), we reach the subcases where the gambling behavior is no longer present (solid plot).

The benchmarking restriction effectively limits the size of the gamble that the manager would be willing to take. Although the constraint is imposed at the terminal date \(T \), at no earlier date \(t < T \) the manager would be willing to allow the return on her portfolio to drop more than the allowed shortfall \(\varepsilon \) below the benchmark. Otherwise, there is a positive probability that the benchmarking restriction may be violated at the terminal date. Moreover, as the manager’s underperformance progressively worsens and she approaches the limit she is unwilling to violate, \(R_X^T + \varepsilon \), her investment policy becomes increasingly more conservative. The manager abandons her otherwise optimal policy and instead closely follows the benchmark. This pattern is evident in Figure 1: a manager with a sufficiently poor performance “locks in” her relative return by holding the benchmark (choosing the risk exposure \(\theta^X \)). On the other hand, an underperforming manager with a better relative performance deviates from holding the benchmark only, but not to the same extent as she would if unrestricted. Finally, in the overperformance region, the benchmarking restriction has little effect on a manager’s behavior: the policy there resembles the unrestricted policy (\(\varepsilon = -\infty \)). Hence, the benchmarking restriction in this economic setting is most effective in the underperformance states – precisely the states in which the manager is tempted to engage in excessive risk taking.

Perhaps of no lesser importance to investors are also explicit incentives the manager faces. The benchmarking restriction can be very effective in aligning those as well. Absent implicit incentives, the general rule is very simple: the manager’s risk exposure decreases if she is benchmarked to a portfolio \(X \) that is less risky than her normal policy, otherwise increases if benchmarked to \(X \) that is riskier than her normal policy. The overall effect of the benchmarking restriction on the manager’s explicit and implicit incentives reflects the interaction of the two mechanisms described above. We assess it quantitatively in the following section, and discuss the cost-benefit implications for the investor.

The expressions for the optimal terminal portfolio value revealed by Proposition 1 make the distinction between the subcases we discussed above. The parameter space is subdivided into two (in a1) to four (in a4) regions of distinct behavior of the manager, as a function of the state-price density \(\xi \) representing economic conditions. Although the expressions for the subcases offer additional insights into the subtleties of the manager’s economic behavior, we do not present the details here in the interest of preserving space.

Finally, we comment that our choice of a benchmark that is safer than both the manager’s
normal policy and the index, $\theta^X \leq \min\{\theta^N, \theta^Y\}$, was for expositional purposes, and is also most likely to be a choice that will favorably resonate with regulators and investors. Indeed, Figure 2 examines the scenario in which the benchmark is riskier than both the normal policy and the index, $\theta^X > \max\{\theta^N, \theta^Y\}$. The contrast with Figure 2 is striking. The risk-taking incentives are not reduced, on the contrary, the risk exposure is amplified as the manager tilts her portfolio towards the riskier benchmark X.

Figure 2. The effects of the benchmarking restriction with $\theta^X > \max\{\theta^N, \theta^Y\}$.

The solid plots are for the risk exposure of the manager facing a benchmarking restriction, and the dotted plots are for the unrestricted manager. We let $\delta = 2.5$, $\varepsilon = -0.25$, $\eta = 0$; the remaining parameter values are as in Figure 1.

Remark 1. (Alternative Specifications of Flow-Performance Relationship) The analysis presented here is equally valid for a fund-flow to relative-performance specification along the lines of that estimated by Chevalier and Ellison (1997) who argue that it resembles a bull spread or a collar of option pricing. That is, it features a flat segment when managers are underperforming, followed by an upward-sloping approximately linear segment straddling the break-even relative performance, and then again a flat one. We may consider a collar-type function f_T given by

$$
 f_T = \left\{ \begin{array}{ll}
 f_L & \text{if } R^W_t - R^Y_t < \eta_L, \\
 f_L + \psi(R^W_t - R^Y_t - \eta_L) & \text{if } \eta_L \leq R^W_t - R^Y_t < \eta_H, \\
 f_H & \text{if } R^W_t - R^Y_t \geq \eta_H,
\end{array} \right.
$$

(6)

with $\psi > 0$, $\eta_L \leq \eta_H$, assuming additionally that $\gamma \frac{R^W_t - R^Y_t}{\int_{f_L}^{f_H} \frac{f_H + \psi}{f_L} \, \frac{1}{1-\gamma} \, \frac{1}{f_H} \, \frac{f_H + \psi}{f_L} \, \frac{1}{1-\gamma} \, \frac{1}{f_H} \, \frac{1}{1-\gamma} \, \frac{1}{f_H} \, \frac{1}{1-\gamma} \, \frac{1}{f_H}}{1} \geq 0$ (satisfied for empirically plausible parameter values). Proposition 1 is valid for this flow function, but with η now replaced by η_H. To analyze other possible specifications of the fund flow-performance relationship (linear-convex, linear-linear, etc.), one would need to resort to numerical analysis. Some preliminary insight into the behavior of managers facing such flow-performance relationship can be gained from Basak, Pavlova, and Shapiro (2007), although they only consider unrestricted managers. It is reassuring, however, that an unrestricted manager’s optimal policy is very similar to our solution for $\varepsilon = -\infty$, suggesting that with the benchmarking restriction in place our main results would maintain.
4. Cost-Benefit Implications of Benchmarking

In this section, we calibrate our economy in order to assess the economic significance of the manager’s adverse behavior. To establish a basis for comparison, we consider an investment policy associated with the manager acting in the best interest of fund investors, not accounting for her explicit and implicit incentives. A hypothetical fund investor is assumed to have CRRA preferences,

\[u_I(W_T) = \frac{W_T^{1-\gamma_I}}{1-\gamma_I}, \quad \gamma_I > 0, \]

over the horizon wealth \(W_T \). The investor is passive in that he delegates all his initial wealth, \(W_0 \), to the manager to invest. The decision to delegate is exogenous. It captures in a reduced form the choice to abstain from active investing due to various frictions associated with money management such as participation and information costs, time required to implement a dynamic trading strategy, transaction costs, behavioral limitations. Alternatively, the investor may simply believe that the manager has better information or ability. The manager’s investment policy that maximizes the investor’s utility is given by

\[\theta^I = \frac{1}{\gamma_I} \mu - r \sigma^2. \]

We first consider an unrestricted manager (\(\varepsilon = -\infty \)). In order to evaluate the economic significance of the manager’s incentives, we compute the utility loss to the investor of the manager’s deviating from the policy \(\theta^I \). Following Cole and Obstfeld (1991), we define a cost-benefit measure, \(\hat{\lambda} \), reflecting the investor’s gain/loss quantified in units of his initial wealth:

\[V^I((1 + \hat{\lambda})W_0) = \hat{V}(W_0), \]

where \(V^I(\cdot) \) denotes the investor’s indirect utility under the policy absent incentives \(\theta^I \), and \(\hat{V}(\cdot) \) his indirect utility under the optimal policy accounting for incentives \(\hat{\theta} \). The first figure reported in each cell of Table 2 is the total cost due to both explicit and implicit incentives, \(\hat{\lambda} \). For completeness, we present the values both for economies (a) with a relatively risk tolerant manager \(\theta^N > \theta^Y \), and economies (b) with a relatively risk averse manager \(\theta^N < \theta^Y \). The utility loss to the hypothetical investor ranges from 0.71% to 53.68% of his initial wealth, with most of the cost estimates falling within the 2–7% range.

To quantify the effects of imposing a benchmarking restriction, we now define a measure of an incremental increase in the hypothetical investor’s utility due to restraining the manager, \(\lambda^* \):

\[V^I((1 + \lambda^*)(1 + \hat{\lambda})W_0) = V^*(W_0), \]

where \(\lambda^* \) is the utility loss to the investor absent the benchmarking restriction, and \(V^*(\cdot) \) is the

\[^6 \text{We calibrate parameter values in Table 2 to reflect a reasonable range of risk aversion coefficients and to be consistent with an empirically-plausible the flow-performance relationship (as, e.g., estimated by Chevalier and Ellison (1997)). The market parameters in economies (b) represent “unfavorable” market conditions designed to temper the manager’s normal risk exposure below that of the index assumed to be the stock market. Although we do not frequently observe mutual fund managers holding a leveraged portfolio, the standard argument (Merton (1971) applied to parameter estimates based on historical data) predicts that they should. This observation is related to the discussion whether very high historical equity premium can be reconciled with a typical agent’s preferences initiated by Mehra and Prescott (1985).} \]
indirect utility of the investor under managerial incentives and benchmarking. A positive λ^* means that the benchmarking restriction benefits the investor.

At the outset, one rarely thinks of investment restrictions as being beneficial. Restricting the manager would certainly be impairing if the manager were acting in the investor’s best interest. However, in the context of active money management, risk management restrictions can be economically justified. Consider, for example, the case of a highly risk averse investor (more precisely, consider the case of $\theta^i < \min\{\theta^N, \theta^Y\}$). Suppose now that we benchmark the fund manager to a low-risk portfolio X, along the lines of that discussed in Section 3. As one can infer from Figure 1, by tightening the benchmarking restriction (increasing ε), the investor or the manager’s superior can effectively reduce the risk exposure of the manager, bringing her policy closer to that optimal for the investor. Indeed, the corresponding gains reported in Table 2 for this scenario (the second figure in each cell) are predominantly positive and can be very large in magnitude: for example, in the top left entry, an increase of 111.98% (most of the loss is recouped) in economies (a) and 12.66% in economies (b). Most of the benefit estimates fall into the 3–8% range, which constitutes a sizable gain to the investor.

The surprising result is that even a risk tolerant investor may benefit from benchmarking a less risk tolerant manager to a safer portfolio. One could argue that such an investor would simply desire to increase the manager’s risk exposure, as the latter is normally below the investor’s desired policy, by benchmarking the manager to a riskier portfolio. Instead, Table 2 illustrates that the reverse can be true. In Table 2, the benchmark portfolio X is safer than the optimal risk exposure of both the investor and the manager, but nevertheless all entries for the cost-benefit measure λ^* (including those in which the manager is less risk tolerant than the investor, $\gamma > \gamma^i$) are positive (except for the case of $\gamma = 4$ in Table 2a). These results show that the simple argument in favor of a riskier benchmark fails in the context of real-life fund managers whose policies may be driven by implicit incentives to a larger degree than by their attitudes towards risk.

Once we have demonstrated that a benchmarking restriction reduces the cost of active management, the natural next step is to ask how such a restriction needs to be designed for the highest benefit to the investor. A guideline can be inferred from Table 2. There are two parameters of the restriction one can adjust: the risk exposure of the benchmark θ^X and the allowed shortfall ε. Table 2 shows an optimum for both. In economies (a), the optimal benchmarking restriction calls for selecting the risk exposure of around 0.4 (40% stock/60% money market) and the allowed shortfall of about 0.20. In economies (b), these numbers are 0.4 and 0.05, respectively. In both economies, it is beneficial to the investor to benchmark the manager to a relatively safe portfolio. The benchmarking restriction is quite loose in economies (a) and very tight, close to the upper bound on ε, in economies (b). Of course, this discussion is necessarily incomplete because the goal of imposing a benchmarking restriction is to limit the downside risk while allowing the manager to pursue active money management. Hence, making the restriction too tight (setting ε to be relatively high) would
force the manager to stay close to the benchmark in most states of the world, effectively making her asset allocation policy passive. Exploring such a trade-off is beyond the scope of this paper, and we leave it for future research.

5. Conclusion

In this paper, we have demonstrated how benchmarking an active money manager to a safer portfolio and imposing limits on her allowed shortfall can be beneficial. This is because explicit and implicit incentives induced by the compensation package may tempt the manager to not act in the best interest of investors and in particular take on excessive risk. The benchmarking restriction we consider in this paper clearly benefits fund investors. However, our analysis leaves aside many possible constraints that may also be beneficial. We believe that endogenizing investment restrictions in the context of active money management is a fruitful area for future research. It would also be of interest to endogenize within our model the fund-flows to relative-performance relationship that we have taken as given.
Appendix A

Proof of Proposition 1. In states in which the benchmarking restriction in (4) is binding, the manager’s optimal terminal portfolio value is given by $W^*_T = e^\varepsilon X_T$, where under the geometric Brownian motion dynamics of X_T and ξ_T, the benchmark level X_T is given by $X_T = Ce^{-\frac{\varepsilon}{\kappa} \xi_T - \frac{\delta a}{\kappa}}$, where C is as in the proposition. In states in which the restriction is not binding, the Lagrange multiplier associated with (4) is zero, and hence the terminal portfolio value coincides with that of the unrestricted manager $W^*_T = \hat{W}_T(y)$ (as below), but with y being the Lagrange multiplier of the restricted manager’s static budget constraint. Therefore, the optimal terminal portfolio value is given by $W^*_T = \max \{\hat{W}_T, e^\varepsilon X_T\}$. For $\varepsilon = -\infty$, we have $W^*_T = \hat{W}_T$, while as ε increases to zero, the maximum operator generates the economies $a1$–$a4$ reported in the proposition.

To demonstrate how economies $a1$–$a4$ obtain, we start with the optimal terminal portfolio value of the unrestricted manager facing just the flow-performance relationship (Basak, Pavlova, and Shapiro (2007)): $\hat{W}_T = J_H \left(\frac{y}{J_H} \xi_T \right) \mathbb{1}\{\xi_T < \xi_{YH}\} + e^\varepsilon Y_T \mathbb{1}\{\xi_{YH} \leq \xi_T < \xi_a\} + J_L \left(\frac{y}{J_L} \xi_T \right) \mathbb{1}\{\xi_a \leq \xi_T\}$, where ξ_{YH}, ξ_a, y are as in the proposition. There are 3 regions (as a function of ξ_T) of distinctive economic behavior: for low ξ_T the fund manager’s terminal portfolio value exceeds the index Y, for intermediate ξ_T it matches the index, then for some threshold value ξ_a it jumps down and for $\xi_T > \xi_a$ the manager underperforms the index. We now introduce the benchmarking restriction. The regions of \hat{W}_T that lie above $e^\varepsilon X_T$ are not affected by the benchmark, while the regions below $e^\varepsilon X_T$ must be replaced by $e^\varepsilon X_T$ to satisfy the benchmarking restriction. So 4 subeconomies in all are obtained depending on which of the “unrestricted” 3 regions are subsumed by the benchmark, and which remain. Depending on how tight the benchmarking restriction is, determined by the allowed shortfall ε, it can:

- **Economy a1**: subsume partially the low-ξ_T outperformance region (and completely the other two regions);
- **Economy a2**: subsume partially the intermediate region (and completely the underperformance region), not affecting the overperformance region;
- **Economy a3**: subsume completely the underperformance region ($\xi_T > \xi_a$), not affecting the other two regions. Note that this is not a measure-zero case because of the discontinuity of \hat{W}_T at ξ_a. So, there is a range of ε for which $e^\varepsilon X_T$ does not cross \hat{W}_T as it passes through the discontinuity;
- **Economy a4**: subsume only a part of the underperformance region, not affecting the other two regions.

Mathematically, to establish which of the 4 economies occurs, we need to find the intersection point of $e^\varepsilon X_T(\xi_T)$ and unrestricted policy $\hat{W}_T(\xi_T)$. Because $\hat{W}_T(\xi_T)$ is monotonic and $\theta^X \leq \min\{\theta^Y, \theta^N\}$, there is only one intersection point. Let ξ_{XH} and ξ_{XL} denote the values of ξ_T at which $e^\varepsilon X_T$ crosses the optimal unrestricted terminal portfolio value corresponding to high flow f_H and low flow f_L, respectively, e.g., ξ_{XH} solves $e^\varepsilon X_T(\xi_{XH}) = J_H \left(\frac{y}{J_H} \xi_{XH} \right)$). Similarly, let ξ_{XY} denote the point $e^\varepsilon X_T$ crosses $e^\varepsilon Y_T$. The relationship between ξ_{XH}, ξ_{XL}, ξ_{XY}, ξ_{YH}, ξ_a determines which subeconomy $a1$–$a4$
obtains. For example, \(\xi_{YH} < \xi_{XY} \leq \xi_a \) means that \(e^x X_t \) crosses \(e^n Y_t \) in the intermediate region and hence we are in subeconomy \(a2 \). Similar straightforward reasoning leads to conditions: \(\xi_{XH} < \xi_{YH} \) for economy \(a1 \), \(\xi_{XL} < \xi_a \leq \xi_{XY} \) for economy \(a3 \), \(\xi_a < \xi_{XL} \) for economy \(a4 \). We then rearrange these conditions in \(\xi_t \)-space in terms of conditions on \(\varepsilon \), as reported in Table 1 of the proposition.

Since \(W_t^\xi \) is a martingale (given the dynamics of \(W_t^\xi \) and \(\xi_t \)), the time-\(t \) portfolio value is obtained by evaluating the conditional expectation of \(W_t^\xi \) over the relevant regions of \(\xi_t \), yielding:

\[
W_t^\xi = E_t[W_t^\xi]/\xi_t \\
= N(d(\gamma, \tilde{\xi}))f_{\mu}^{(1/\gamma-1)}Z(\gamma)(y\xi_t)^{-1/\gamma} \\
+ \left[N(d(\hat{\kappa}, \tilde{\xi})) - N(d(\hat{\kappa}, \xi_{YH})) \right] B Z(\hat{\kappa})\xi_t^{-1/\hat{\kappa}}1_{\{a2, a3, a4\}} \\
+ \left[N(d(\gamma, \tilde{\xi})) - N(d(\gamma, \xi_a)) \right] f_{\mu}^{(1/\gamma-1)}Z(\gamma)(y\xi_t)^{-1/\gamma}1_{\{a4\}} \\
+ N(-d(\hat{\kappa}, \tilde{\xi}))C Z(\hat{\kappa})\xi_t^{-1/\hat{\kappa}}. \tag{A1}
\]

To obtain the risk exposure expression in the proposition, note that from (2), the diffusion term of the manager’s optimal value process is \(\theta_t^* \sigma W_t^\xi \). Equating the latter term with the diffusion term obtained by applying Itô’s lemma to (A1) yields the expression for \(\theta_t^* \).

\[\blacksquare\]

Appendix B

Analysis of Economies with a Relatively Risk Averse Manager \(\theta^N < \theta^Y \)

Proposition 2. The optimal risk exposure and terminal portfolio value of a fund manager facing implicit incentives and a benchmarking restriction in economies with \(\theta^N < \theta^Y \) are given by:

\[
\begin{align*}
\theta_t^* &= \theta^N + \left[N(d(\hat{\kappa}, \tilde{\xi})) - N(d(\hat{\kappa}, \xi_b)) \right] (\gamma/\hat{\kappa} - 1) B \theta^N Z(\hat{\kappa})\xi_t^{-1/\hat{\kappa}}/W_t^\xi \cdot 1_{\{a2, b3, b4, b5\}} \\
&\quad + \left[N(d(\hat{\kappa}, \xi_b)) - N(d(\hat{\kappa}, \xi_{XL})) \right] \cdot 1_{\{a2, b3\}} + N(-d(\hat{\kappa}, \tilde{\xi})) \cdot 1_{\{a4\}} \\
&\quad + \left[\phi(d(\hat{\kappa}, \tilde{\xi})) - \phi(d(\hat{\kappa}, \xi_b)) \right] B Z(\hat{\kappa})\xi_t^{-1/\hat{\kappa}}1_{\{a2, b3, b4, b5\}} \\
&\quad + \left[\phi(d(\gamma, \tilde{\xi}))f_{\mu}^{(1/\gamma-1)} + \left(\phi(d(\gamma, \tilde{\xi})) - \phi(d(\gamma, \tilde{\xi})) \right) f_{\mu}^{(1/\gamma-1)} \right] 1_{\{b3, b5\}} \\
&\quad + \left[\phi(d(\hat{\kappa}, \xi_b)) - \phi(d(\hat{\kappa}, \xi_{XL})) \right] 1_{\{b2, b3\}} - \left[\phi(d(\hat{\kappa}, \xi_{XL})) \cdot C Z(\hat{\kappa})\xi_t^{-1/\hat{\kappa}} \right] \gamma^{\theta^N/(\kappa \sqrt{T-t})} W_t^\xi, \\
W_t^\xi &= \frac{1}{L} J_M \left(\frac{y}{L} \xi_T \right) 1_{\{T < \xi_T \}} + e^\mu Y_T 1_{\{\xi_T < \xi_T < \xi_{XL}, \xi_{XL} \}} + \frac{1}{\mu} J_M \left(\frac{y}{\mu} \xi_T \right) 1_{\{\xi_T < \xi_T < \xi_{XL} \}} \cdot 1_{\{b2, b3, b4, b5\}} \\
&\quad + e^x X_T 1_{\{T < \xi_T < \xi_{YL} \}} or \{\xi_T \leq \xi_T \} \\
\end{align*}
\]

where \(y \) solves \(E[\xi_T W_t^\xi] = W_0 \) and \(\xi_T < \xi_{YH} \) satisfies \(g(\xi_b) = 0 \), with \(J(\cdot), N(\cdot), \phi(\cdot), g(\cdot), Z(\cdot), d(\cdot), \xi_{YH}, \xi_{XL}, \xi_{XH}, \xi_{XY}, B, C, \hat{\kappa}, \tilde{\xi} \) as given in Proposition 1.

Economies (b) have five subeconomies, as summarized in Table 3, with \(\tilde{\xi} = \xi_{XL} \) in b1, b2, b3 and \(\check{\xi} = \xi_b \) otherwise; \(\check{\xi} = \xi_{XY} \) in b2, b4 and \(\check{\xi} = \xi_{YH} \) in b3, b5; \(\tilde{\xi} = \xi_{XL} \) in b1, \(\check{\xi} = \xi_{XY} \) in b2, b4, \(\check{\xi} = \xi_{XH} \) in b3, b5.
The proof of the result above for economies b1–b5 with $\theta^N < \theta^Y$ follows the same steps as in the proof of Proposition 1, and hence is omitted. One difference in the solution is the emergence of 5 subeconomies, instead of the 4 in Proposition 1 for $\theta^N > \theta^Y$. The reason is that in economies (b), the unrestricted optimal portfolio value given by $\hat{W}_T = \frac{1}{f_L} J \left(\frac{y}{f_L} \xi_T \right) \mathbb{1}_{\{\xi_T < \xi_b\}} + \varepsilon^Y Y_T \mathbb{1}_{\{\xi_b \leq \xi_T < \xi_{YH}\}} + \frac{1}{f_H} J \left(\frac{y}{f_H} \xi_T \right) \mathbb{1}_{\{\xi_{YH} \leq \xi_T\}}$ is not monotonic as a function of ξ_T (due to the upward jump at ξ_b). Hence, while in economies (a) $e^\varepsilon X_T$ could cross \hat{W}_T at one and only one of the three regions, it is now possible that $e^\varepsilon X_T$ crosses \hat{W}_T at two points in the non-monotonicity region. This gives rise to one additional subeconomy, as well as additional conditions for those subeconomies b1–b5 (Table 3).

The optimal risk exposure derivation follows the same steps outlined in the proof of Proposition 1, where now the time-t portfolio value in economies (b) is given by:

$$W_t^* = \mathcal{N}(d(\gamma, \hat{\xi})) f_L^{(1/\gamma - 1)} Z(\gamma) (y \xi_t)^{-1/\gamma}$$

$$+ \left[\mathcal{N}(d(\hat{\kappa}, \hat{\xi})) - \mathcal{N}(d(\hat{\kappa}, \hat{\xi}_{bL})) \right] B Z(\hat{\kappa}) \xi_t^{-1/\hat{\kappa}} \mathbb{1}_{\{b2, b3, b4, b5\}}$$

$$+ \left[\mathcal{N}(d(\gamma, \hat{\xi})) - \mathcal{N}(d(\gamma, \hat{\xi})) \right] f_H^{(1/\gamma - 1)} Z(\gamma) (y \xi_t)^{-1/\gamma} \mathbb{1}_{\{b3, b5\}}$$

$$+ \left[(\mathcal{N}(d(\hat{\kappa}, \xi_b)) - \mathcal{N}(d(\hat{\kappa}, \xi_{XH}))) \mathbb{1}_{\{b2, b3\}} + \mathcal{N}(-d(\hat{\kappa}, \hat{\xi})) \right] C Z(\hat{\kappa}) \xi_t^{-1/\hat{\kappa}}.$$
Table 1

Conditions for occurrence of subeconomies in economies (a)

There are four possible subeconomies in economies (a) with $\theta^Y > \theta^Y$. The following table summarizes the conditions on ε in economies (a).

<table>
<thead>
<tr>
<th>Subeconomies</th>
<th>(\varepsilon > \varepsilon_{a1})</th>
<th>(\varepsilon_{a1} \geq \varepsilon > \varepsilon_{a2})</th>
<th>(\varepsilon_{a2} \geq \varepsilon > \varepsilon_{a3})</th>
<th>(\varepsilon_{a3} > \varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a1)</td>
<td>(\varepsilon > \varepsilon_{a1})</td>
<td>(\varepsilon_{a1} \geq \varepsilon > \varepsilon_{a2})</td>
<td>(\varepsilon_{a2} \geq \varepsilon > \varepsilon_{a3})</td>
<td>(\varepsilon_{a3} > \varepsilon)</td>
</tr>
<tr>
<td>(a2)</td>
<td>(\varepsilon > \varepsilon_{a1})</td>
<td>(\varepsilon_{a1} \geq \varepsilon > \varepsilon_{a2})</td>
<td>(\varepsilon_{a2} \geq \varepsilon > \varepsilon_{a3})</td>
<td>(\varepsilon_{a3} > \varepsilon)</td>
</tr>
<tr>
<td>(a3)</td>
<td>(\varepsilon > \varepsilon_{a1})</td>
<td>(\varepsilon_{a1} \geq \varepsilon > \varepsilon_{a2})</td>
<td>(\varepsilon_{a2} \geq \varepsilon > \varepsilon_{a3})</td>
<td>(\varepsilon_{a3} > \varepsilon)</td>
</tr>
<tr>
<td>(a4)</td>
<td>(\varepsilon > \varepsilon_{a1})</td>
<td>(\varepsilon_{a1} \geq \varepsilon > \varepsilon_{a2})</td>
<td>(\varepsilon_{a2} \geq \varepsilon > \varepsilon_{a3})</td>
<td>(\varepsilon_{a3} > \varepsilon)</td>
</tr>
</tbody>
</table>

where

\[
\varepsilon_{a1} = \frac{1}{\gamma} \left[\left(\frac{\gamma}{K} - 1 \right) \ln \xi_{YH} - \ln y - \gamma \ln W_0 + (1 - \gamma) \ln f_H \right] \\
- \left[(1 - \delta) r + \delta \left(\mu - \delta \frac{\sigma^2}{2} - \left(r + \frac{\kappa^2}{2 \gamma} \right) \frac{\sigma}{K} \right) \right] T,
\]

\[
\varepsilon_{a2} - \varepsilon_{a1} = \left(\frac{1}{K} - \frac{1}{K} \right) \ln \left(\frac{\xi_{YH}}{\xi_a} \right) < 0,
\]

\[
\varepsilon_{a3} - \varepsilon_{a1} = \left(\frac{1}{\gamma} - \frac{1}{K} \right) \ln \left(\frac{\xi_{YH}}{\xi_a} \right) + \left(\frac{1}{\gamma} - 1 \right) \ln \left(\frac{f_L}{f_H} \right) < 0.
\]
Table 2a
Costs and benefits of benchmarking to fund investors in economies (a)

The gain/loss quantified in units of a hypothetical investor’s initial wealth, $\hat{\lambda}$, solves $V^I((1+\hat{\lambda})W_0) = \hat{V}(W_0)$, where $V^I(\cdot)$ denotes the investor’s indirect utility under his desired policy absent incentives θ^I, and $\hat{V}(\cdot)$ his indirect utility under the manager’s incentives. The incremental increase in the investor’s utility due to restraining the manager, λ^*, solves $V^I((1 + \lambda^*)(1 + \hat{\lambda})W_0) = V^*(W_0)$, where $V^*(\cdot)$ is the indirect utility of the investor in the presence of benchmarking. The fixed parameter values are (where applicable) $\gamma = 1.0$, $\gamma_I = 2.0$, $\delta = 0.05$, $\varepsilon = -0.2$, $f_L = 0.7$, $f_H = 1.3$, $(f_L + f_H)/2 = 1$, $\beta = 0.5$, $\eta = 0.1$, $\mu = 0.08$, $r = 0.01$, $\sigma = 0.17$, $W_0 = 1$, $T = 1$.

<table>
<thead>
<tr>
<th></th>
<th>Cost-benefit measures</th>
<th>(\hat{\lambda}, \lambda^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managerial risk</td>
<td>γ</td>
<td>0.5</td>
</tr>
<tr>
<td>aversion</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>-53.68, 111.98</td>
<td>-8.92, 8.82</td>
</tr>
<tr>
<td></td>
<td>-2.70, 1.85</td>
<td>-1.24, 0.34</td>
</tr>
<tr>
<td></td>
<td>-0.71, -0.17</td>
<td></td>
</tr>
<tr>
<td>Implicit reward</td>
<td>$f_H - f_L$</td>
<td>0.2</td>
</tr>
<tr>
<td>for outperformance</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>-5.86, 5.32</td>
<td>-7.35, 6.99</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.82</td>
<td>-10.59, 10.84</td>
</tr>
<tr>
<td></td>
<td>-12.35, 13.06</td>
<td></td>
</tr>
<tr>
<td>Risk exposure</td>
<td>θ^Y</td>
<td>0.50</td>
</tr>
<tr>
<td>of the index</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.82</td>
<td>-9.98, 10.02</td>
</tr>
<tr>
<td></td>
<td>-11.54, 11.57</td>
<td>-13.52, 13.48</td>
</tr>
<tr>
<td></td>
<td>-15.81, 15.71</td>
<td></td>
</tr>
<tr>
<td>Flow threshold</td>
<td>η</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>-1.18, 0.12</td>
<td>-1.38, 0.52</td>
</tr>
<tr>
<td></td>
<td>-2.71, 1.78</td>
<td>-5.56, 5.06</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.82</td>
<td></td>
</tr>
<tr>
<td>Risk exposure</td>
<td>θ^X</td>
<td>0.1</td>
</tr>
<tr>
<td>of the benchmark</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.86</td>
<td>-8.92, 8.92</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.95</td>
<td>-8.92, 8.95</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.92</td>
<td></td>
</tr>
<tr>
<td>Allowed shortfall</td>
<td>ε</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.74</td>
<td>-8.92, 8.82</td>
</tr>
<tr>
<td></td>
<td>-8.92, 8.75</td>
<td>-8.92, 8.48</td>
</tr>
<tr>
<td></td>
<td>-8.92, 7.78</td>
<td></td>
</tr>
</tbody>
</table>
Table 2b
Costs and benefits of benchmarking to the investor in economies (b)

The gain/loss quantified in units of a hypothetical investor’s initial wealth, \(\hat{\lambda} \), solves \(V^I((1 + \hat{\lambda})W_0) = \hat{V}(W_0) \), where \(V^I(\cdot) \) denotes the investor’s indirect utility under his desired policy absent incentives \(\theta^I \), and \(\hat{V}(\cdot) \) his indirect utility under the manager’s incentives. The incremental increase in the investor’s utility due to restraining the manager, \(\lambda^* \), solves \(V^I((1 + \lambda^*)(1 + \hat{\lambda})W_0) = V^*(W_0) \), where \(V^*(\cdot) \) is the indirect utility of the investor in the presence of benchmarking. The fixed parameter values are (where applicable) \(\gamma = 1.0, \gamma_I = 2.0, \delta = 0.05, \varepsilon = -0.2, f_L = 0.7, f_H = 1.3, (f_L + f_H)/2 = 1, \beta = 1.0, \eta = 0.1, \mu = 0.06, r = 0.02, \sigma = 0.29, W_0 = 1, T = 1. \)

<table>
<thead>
<tr>
<th>Effects of</th>
<th>Cost-benefit measures</th>
<th>(\hat{\lambda}, \lambda^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managerial risk aversion</td>
<td>(\gamma)</td>
<td>0.5</td>
</tr>
<tr>
<td>Implicit reward for outperformance</td>
<td>(f_H - f_L)</td>
<td>0.2</td>
</tr>
<tr>
<td>Risk exposure of the index</td>
<td>(\theta^y)</td>
<td>0.50</td>
</tr>
<tr>
<td>Flow threshold</td>
<td>(\eta)</td>
<td>-0.10</td>
</tr>
<tr>
<td>Risk exposure of the benchmark</td>
<td>(\theta^x)</td>
<td>0.1</td>
</tr>
<tr>
<td>Allowed shortfall</td>
<td>(\varepsilon)</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

\(-6.06, 2.77 -6.06, 3.46 -6.06, 4.18 -6.06, 4.90 -6.06, 5.60 \)
Table 3

Conditions for occurrence of subeconomies in economies (b)

There are five possible subeconomies in economies (b) with $\theta^N < \theta^Y$. However, for each set of exogenous parameters only four subcases can occur in (b) as ε changes. The following table summarizes the conditions on ε in economies (b).

<table>
<thead>
<tr>
<th>Subeconomies</th>
<th>$\gamma \geq 1$</th>
<th>$\varepsilon_{b2} > \varepsilon_{b3}$</th>
<th>$\varepsilon_{b2} < \varepsilon_{b3}$</th>
<th>$\gamma < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b1$</td>
<td>$\varepsilon > \varepsilon_{b1}$</td>
<td>$\varepsilon > \varepsilon_{b1}$</td>
<td>$\varepsilon > \varepsilon_{b1}$</td>
<td>$\varepsilon_{b2} > \varepsilon_{b3}$</td>
</tr>
<tr>
<td>$b2$</td>
<td>$\varepsilon_{b1} \geq \varepsilon > \varepsilon_{b2}$</td>
<td>$\varepsilon_{b1} \geq \varepsilon > \varepsilon_{b2}$</td>
<td>$\varepsilon_{b1} \geq \varepsilon > \varepsilon_{b3}$</td>
<td>$\varepsilon_{b2} > \varepsilon_{b3}$</td>
</tr>
<tr>
<td>$b3$</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>$b4$</td>
<td>$\varepsilon_{b2} \geq \varepsilon > \varepsilon_{b3}$</td>
<td>$\varepsilon_{b2} \geq \varepsilon > \varepsilon_{b3}$</td>
<td>$\varepsilon_{b3} \geq \varepsilon > \varepsilon_{b2}$</td>
<td>N/A</td>
</tr>
<tr>
<td>$b5$</td>
<td>$\varepsilon_{b3} > \varepsilon$</td>
<td>$\varepsilon_{b3} > \varepsilon$</td>
<td>$\varepsilon_{b2} > \varepsilon$</td>
<td>N/A</td>
</tr>
</tbody>
</table>

where

\[
\varepsilon_{b1} = \varepsilon_{a1} + \left(\frac{1}{\hat{\kappa}} - \frac{1}{\bar{\kappa}}\right) \ln \left(\frac{\xi_{YH}}{\xi_b}\right),
\]

\[
\varepsilon_{b2} - \varepsilon_{b1} = \left(\frac{1}{\hat{\gamma}} - \frac{1}{\bar{\kappa}}\right) \ln \left(\frac{\xi_{YH}}{\xi_b}\right) + \left(\frac{1}{\hat{\gamma}} - 1\right) \ln \left(\frac{f_L}{f_{H}}\right) < 0,
\]

\[
\varepsilon_{b3} - \varepsilon_{b1} = -\left(\frac{1}{\hat{\kappa}} - \frac{1}{\bar{\kappa}}\right) \ln \left(\frac{\xi_{YH}}{\xi_b}\right) < 0,
\]

and ε_{a1} is as in Table 1.
References

