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A Proofs

Proof of Proposition 1. If the market maker uses a linear pricing rule of the form p(y) =
µ + λy, blockholder i maximizes:

E[(ṽ − µ − λy)xi | ṽ = v] = (v − µ − λ
∑

j 6=i

xj)xi − λx2
i .

This maximization problem yields

xi(v) =
1

λ
[v − µ − λ

∑

j

xj(v)] ∀i. (40)

Summing both sides across i yields

∑

j

xj (v) =
I

λ
[v − µ − λ

∑

j

xj (v)]

∑

j

xj (v) =
I

(I + 1)λ
[v − µ]

Substituting into (40) yields

xi(v) =
1

(I + 1)λ
[v − µ] ∀i,

which means that, in a linear equilibrium, blockholders’ strategies are symmetric. Total order
flow is thus given by

y =
I

(I + 1) λ
(v − µ) + ε. (41)

The market maker takes the blockholders’ strategies as given and sets

p(y) = E[ṽ|y]. (42)

Using the normality of ṽ and ỹ yields

λ =

√
I

I + 1

ση

σε
,

µ = φa log (1 + a) + φb log (1 +
∑

ibi) .

From this we obtain:

xi(v) =
1√
I

σε

ση
(v − φa log (1 + a) − φb log (1 +

∑
ibi)) ∀i,
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p(y) = φa log (1 + a) + φb log (1 +
∑

ibi) +

√
I

I + 1

ση

σε
y,

as required. Blockholder i’s trading profits equal xi (v − p) and can be computed immediately
using the above expressions.

Proof of Proposition 2. The result follows from p (y) = µ + λy and equation (41).

Proof of Proposition 5. Putting equation (18) under a common denominator yields

φaI (I + 1) − φbI (I + 1)2 − φaαI2 + φbβ (I + 1)2

I2 (I + 1)2 = 0. (43)

Equation (18) is a cubic, and has at most three roots. The function is discontinuous at
I = −1 and approaches −∞ either side of I = −1 (since the − φaα

(I+1)2
term dominates). It

is also discontinuous at I = 0 and approaches +∞ either side of I = 0 (since the φbβ
I2 term

dominates). It is continuous everywhere else.
As I → −∞, the −φb

I
term in (18) dominates, and so the function asymptotes the x-axis

from above. Since it approaches −∞ as I rises to −1, and is continuous between I = −∞ and
I = −1, there must be one root between these two points. Similarly, since the function tends to
+∞ as I rises from just above −1 to just below 0, and is continuous between these two points,
there must be a second root within this interval. As I → +∞, the −φb

I
term in (18) again

dominates, and so the function asymptotes the x-axis from below. Since the function tends to
+∞ as I approaches 0 from above, and is continuous between I = 0 and I = +∞, there must
be a third root (Ĩ) between these two points. There can be no other positive roots, since there
are two negative roots and three roots in total. The positive root is a local maximum, since
the gradient is positive for I < Ĩ and negative for I > Ĩ.

Let F (I, θ) denote the left-hand side of (43), where θ is a vector of parameters φa, φb, α,
β. I∗

soc is defined by F = 0. Differentiating with respect to θ gives

∂F

∂θ
+

∂F

∂I

∂I

∂θ
= 0.

Since the gradient F is positive just below I∗
soc and negative just above I∗

soc,
∂F
∂I
|I=I∗soc

< 0.
Therefore, the sign of ∂I

∂θ
equals the sign of ∂F

∂θ
, which in turn is the cross-partial derivative of

total surplus (19) with respect to I and θ. This generates the comparative statics with respect
to α, β, φa and φb.

Proof of Proposition 6. Equation (20) can be rewritten

2β

(
−φb (I + 1)√

I
+

φa√
I

+
φb (I + 1)

I3/2

)
− I − 1

I + 1
σησε = 0.

Let

F (I) = 2β

(
−φb (I + 1)√

I
+

φa√
I

+
φb (I + 1)

I3/2

)
− I − 1

I + 1
σησε.

We need only consider I ≥ 1. Since 2β
(
−φb(I+1)√

I
+ φa√

I
+ φb(I+1)

I3/2

)
is decreasing in I ∈ [1,∞)

and I−1
I+1

σησε is increasing in I ∈ [1,∞), F (I) is decreasing in [1,∞). Then since F (∞) < 0
and F (1) > 0, there exists a unique root of F (I) = 0 in [1,∞).
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The comparative statics results follow from taking the cross-partial derivatives of the ob-
jective function. The cross-partial with respect to I and β is φa

I(I+1)
− φb

I
+ φb

I2 , which is positive

from equation (20). The other cross-partial derivatives can be immediately signed.

Proof of Proposition 7. The only difference from the previous analysis is that in the action
stage of the game, blockholder i now simultaneously chooses her action bi and whether to
become informed.

We proceed by backwards induction. Let J be the number of blockholders that acquire
information. In the trading stage, uninformed blockholders cannot expect to make profits and
thus do not trade in aggregate. Therefore, only the J informed blockholders trade and the
equilibrium is similar to the one derived in Proposition 1.

Now in the action stage, the manager must choose an action a. Using the same arguments
as in Proposition 3, the manager’s optimal action is

a = φaα

(
J

J + 1

)
− 1. (44)

Blockholders must choose actions bi and whether to become informed. These decisions can
be taken independently since informed trading profits are independent of bi (which is public),
and the choice of bi depends only on blockholder i’s stake β/I. The optimal action of each
blockholder is thus

bi = φbβ

(
1

I

)2

− 1

I
. (45)

From equation (6), if there are I informed blockholders, then each blockholder’s trading profits
are given by:

1√
I(I + 1)

σησε.

A blockholder will acquire information if and only if her trading profits are higher than c. This
gives the number J of blockholders that decide to become informed in equilibrium.

Proof of Proposition 8. Let n and J(I) be as given in Proposition 7. Using the results of
Proposition 3, expected firm value is

E[ṽ] = φa log

[
φaα

(
J(I)

J(I) + 1

)]
+ φb log

[
φbβ

(
1

I

)]
. (46)

We wish to maximize the above expression with respect to I. Since J(I) = n for I ≥ n,
it is never optimal to increase I beyond n since it reduces the second term in the firm value
while keeping the first term constant. Therefore, I∗

costly ≤ n. When I ≤ n, J(I) = I and the
problem is the same as in Proposition 4. From (15) we obtain the desired result.

Proof of Proposition 9. The manager will not exert effort above the level for which

φa log (1 + a) = φb log
(
1 +

∑
ib̂i

)
,

i.e.
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a = exp

(
φb

φa

log
(
1 +

∑
ib̂i

))
− 1.

This derives the optimal a as given in equation (28). Similarly, blockholder i will not exert
effort above the level for which

φb log

(
1 + bi +

∑
j 6=i

b̂j

)
= φa log (1 + â) ,

i.e.

bi = exp

(
φa

φb
log (1 + â)

)
−
∑
j 6=i

b̂j − 1.

A Nash equilibrium requires the following three conditions to hold:

φb log (1 + Ibi) = φa log (1 + a) .

a ≤ φaα

(
I

I + 1

)
− 1

bi ≤ φbβ

(
1

I

)2

− 1

I
.

If the first condition was violated, then the party producing the higher output would gain
by reducing effort. The two inequality conditions represent the maximum levels of effort that
the manager and blockholders will exert, given the marginal cost of effort.

Out of the continuum of potential Nash equilibria, we seek the one that maximizes firm
value. Since firm value is increasing in both a and bi, it is clear that at least one incentive
compatibility constraint will bind. If neither constraint binds, then all parties are exerting
suboptimal effort. We could raise the effort levels of all parties while maintaining the equality
condition and violating neither constraint.

We now show that, in fact, both constraints will bind. Consider the case where bi =

φbβ
(

1
I

)2 − 1
I
. (Starting with a = φaα

(
I

I+1

)
− 1 leads to the same result). Then we have

φb log

[
φbβ

(
1

I

)]
= φa log (1 + a)

a = exp

(
φb

φa
log

[
φbβ

(
1

I

)])
− 1.

Recall that we also require a ≤ φaα
(

I
I+1

)
− 1. Hence firm value is optimized by solving:

max
I

exp

(
φb

φa
log

[
φbβ

(
1

I

)])
s.t. exp

(
φb

φa
log

[
φbβ

(
1

I

)])
≤ φaα

(
I

I + 1

)
.

The constraint will bind, and so we obtain

φa log

[
φaα

(
I

I + 1

)]
= φb log

[
φbβ

(
1

I

)]
. (47)
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The firm value optimum setting I to ensure all parties exert their “full” effort levels. The
intuition is as follows. Consider a Nash equilibrium where the blockholders are exerting their

full effort (i.e. bi = φbβ
(

1
I

)2 − 1
I
), and the manager is not (i.e. a < φaα

(
I

I+1

)
− 1). bi is thus

constrained by I via the equation bi = φbβ
(

1
I

)2 − 1
I
, and so firm value rises if I is reduced

to relax this constraint and allow bi to rise. Unlike in the core model, we do not have the
side-effect that reducing I decreases a. I only determines the upper bound to a, not its level.
Since a < φaα

(
I

I+1

)
− 1, the upper bound is not a constraint anyway. Rather than declining,

a will rise to accompany the increase in bi and ensure that φb log (1 + Ibi) = φa log (1 + a) still
holds.

From equation (47), the optimal number of blockholders is determined implicitly by:

I2

I + 1
=

φbβ

φaα
exp (φb − φa) = Z.

Using the quadratic formula, the unique positive solution is

I =
Z +

√
Z2 + 4Z

2
,

which is increasing in φb and β, and decreasing in φa and α.

Proof of Proposition 10. We now allow the non-negativity constraints to bind. Deriving
p̃ as in the main model and solving the manager’s objective function, he will choose either

a = φaα
I

I+1
− 1 or a = 0. If φa log

[
φaα

I
I+1

]
< φb log

(
1 +

∑
ib̂i

)
, exerting a = φaα

I
I+1

− 1

will have no effect on p̃ and so the manager will choose a = 0. Even if φa log
[
φaα

I
I+1

]
≥

φb log
(
1 +

∑
ib̂i

)
, it is not automatic that the manager will exert effort. Exerting effort in-

creases p̃ not by I
I+1

φa log
[
φaα

I
I+1

]
, as in the core model, but by only

I

I + 1

(
φa log

[
φaα

I

I + 1

]
− φb log

(
1 +

∑
ib̂i

))

because blockholder effort “supports” firm value even if a = 0. Hence the manager chooses
a = φaα

I
I+1

− 1 if and only if

α
I

I + 1

(
φa log

[
φaα

I

I + 1

]
− φb log

(
1 +

∑
ib̂i

))
≥ a.

and so the optimal a is as given by (32). Blockholder i’s effort level is derived similarly.
There are two candidates for a Nash equilibrium:

{
a = 0, bi = φbβ

(
1
I

)2 − 1
I

a = φaα
I

I+1
− 1, bi = 0 .

Firm value is thus either φa log
[
φaα

I
I+1

]
or φb log

[
φbβ

1
I

]
. The former is monotonically in-

creasing in I, and maximized at φa log (φaα) for I = ∞. The latter is monotonically decreasing
in I, and maximized at φb log (φbβ) for I = 1. Thus I∗ is as given in (34).
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Proof of Proposition 11. Proceeding as in the main model, the actions are given by

a = φaα

[
1 − ω

I + 1

]
− 1 (48)

and

bi = φbβ

[
ζ

I (I + 1)
+

1 − ζ

I2

]
− 1

I
. (49)

Firm value is given by:

E[ṽ] = φa ln

[
φaα

[
1 − ω

I + 1

]]
+ φb ln

[
φbβ

[
ζ

I + 1
+

1 − ζ

I

]]
. (50)

The first-order condition is given by (36). Putting this under a common denominator yields

F (I, ω, ζ) =
I (I + 1 − ζ)φaω − φb

[
(I + 1)2 − ζ (2I + 1)

]
(I + 1 − ω)

I (I + 1 − ω) (I + 1 − ζ)
.

It is a cubic, and has at most three roots. If I → ±∞, the numerator becomes dominated by

the term containing (I + 1)2 and so F tends to −φb(I+1)2

I(I+1−ζ)
. It thus asymptotes the x-axis from

below. If I → 0 or I → − (1 − ζ), then F tends to
−φb[(I+1)2−ζ(2I+1)]

I(I+1−ζ)
. For I close to 0, we have

(I+1)2−ζ(2I+1)
I(I+1−ζ)

> 0 and so the sign depends on −φb

I
. It is positive (negative) as I approaches

0 from below (above). For I close to − (1 − ζ), we have (I+1)2−ζ(2I+1)
I

< 0 and so the sign

depends on φb

I+1−ζ
. It is negative (positive) as I approaches − (1 − ζ) from below (above). If

I → − (1 − ω), then F tends to φaω
I+1−ω

and is negative (positive) as I approaches − (1 − ω)
from below (above).

To identify the roots, consider − (1 − ζ) < − (1 − ω). (The same arguments apply for
− (1 − ω) < − (1 − ζ).) At I = −∞, F asymptotes the x-axis from below, and declines until
it reaches −∞ when I is just below − (1 − ζ), so there are no roots for I < − (1 − ζ). When
I is just above − (1 − ζ), F → ∞. It then decreases, crosses through zero and becomes −∞
just below − (1 − ω). There is one root for − (1 − ζ) < I < − (1 − ω). F → ∞ just above
I = − (1 − ω) and just below I = 0, so there are either 0 or 2 roots for − (1 − ω) < I < 0.
Thus, there can be at most 2 roots for I > 0. F → −∞ when I is just above 0, and asymptotes
the x-axis from below as I → ∞. Therefore, F crosses the x-axis either 0 or 2 times for I > 0.
If F has no roots, it is negative for all I > 0 and so the optimal number of blockholders is its
minimum value of 1. If it has two roots greater than 1, the upper root Iu is the maximum since
the derivative is positive below Iu and negative above Iu. As in the proof of Proposition 5, the
cross-partials are sufficient to determine the sign of the comparative statics. The cross-partials
with respect to φa and φb are immediate. For ω and ζ , we have:

∂2E[v]

∂I∂ω
=

φa

(I + 1 − ω)2
> 0

∂2E[v]

∂I∂ζ
=

φb

(I + 1 − ζ)2
> 0.
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Proof of Proposition 14. Suppose the market maker uses a linear pricing rule of the form
p(y) = µ + λy and blockholders use a linear demand of the form xi(ν) = γ(ν̃ − µ). Then
blockholder i maximizes:

E[(ṽ − µ − λy)xi | ν̃i = ν] =

(
σ2

η

σ2
η + σ2

δ

(ν − µ) − λ(I − 1)γ

(
σ2

η

σ2
η + σ2

δ

(ν − µ)

))
xi − λx2

i .

This maximization problem yields

xi(ν) =
1

2λ

[
σ2

η

σ2
η + σ2

δ

(ν − µ) − λ(I − 1)γ

(
σ2

η

σ2
η + σ2

δ

(ν − µ)

)]
∀i.

The strategies of the blockholders are symmetric and we thus have

xi(ν) =
1

2

(
1

λ
− (I − 1)γ

)
σ2

η

σ2
η + σ2

δ

(ν − µ) ∀i.

which implies that

γ =
σ2

η

((I + 1)σ2
η + 2σ2

δ )λ

The market maker takes the blockholders’ strategies as given and sets

p(y) = E[ṽ|y]. (51)

Using the normality of ṽ and ỹ yields

λ =

√
I(σ2

δ + σ2
η)σ

2
η

σε((I + 1)σ2
η + 2σ2

δ )

µ = φa log (1 + a) + φb log (1 +
∑

ibi) .

From this we obtain:

xi(νi) =
σε√

I(σ2
δ + σ2

η)
(νi − φa log (1 + a) − φb log (1 +

∑
ibi)) ∀i,

p(y) = φa log (1 + a) + φb log (1 +
∑

ibi) +

√
I(σ2

δ + σ2
η)σ

2
η

σε((I + 1)σ2
η + 2σ2

δ )
y,

as required.

Proof of Proposition 12. Dropping terms that do not contain bi, blockholder i’s objective
function (37) becomes

max
bi

(
β

I

)
φb log (1 +

∑
ibi) − bi +

1√
I (I + 1)

σε

ση
(φa log (1 + a) + φb log (1 +

∑
ibi) − µ)2

Given the conjecture bi = φbβ
I2 − 1

I
, we have

µ = φa ln (1 + a) + φb ln

(
φbβ

I

)
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and so the objective becomes

max
bi

(
β

I

)
φb log (1 +

∑
ibi) − bi +

1√
I (I + 1)

σε

ση
E

[(
φb log (1 +

∑
ibi) − φb log

(
φbβ

I

)
+ η

)2
]

with first-order condition

φbβ

I (1 +
∑

ibi)
− 1 +

2√
I (I + 1)

σε

ση

(
φb log (1 +

∑
ibi) − φb log

(
φbβ

I

))
φb

(1 +
∑

ibi)
= 0. (52)

where

1 +
∑

ibi =
1

I
+

I − 1

I2
φbβ + bi.

One solution is bi = φbβ
I2 − 1

I
. The second-order condition is:

− φbβ

I (1 +
∑

ibi)
2 +

2√
I (I + 1)

σε

ση




− φb(
1+
∑

ibi

)2

(
φb ln (1 +

∑
ibi) − φb ln

(
φbβ
I

))

+ φb(
1+
∑

ibi

) φb(
1+
∑

ibi

)




which has the same sign as

−β

I
+

2√
I (I + 1)

σε

ση
φb

(
1 −

(
ln

(
1

I
+

I − 1

I2
φbβ + bi

)
− ln

(
φbβ

I

)))
.

To show that bi = φbβ
I2 − 1

I
is a global maximum, it is sufficient to show that the function

is globally concave, i.e. is negative for all bi. Since the second-order condition is decreasing in
bi, it is sufficient to show that it is negative when bi is at its lowest possible value of 0. Then,
it becomes

−β

I
+

2√
I (I + 1)

σε

ση

φb

(
1 −

(
ln

(
I − 1

I2
φbβ +

1

I

)
− ln

(
1

I
φbβ

)))
< 0 (53)

which is satisfied if

−β

I
+

2√
I (I + 1)

σε

ση

φb

(
1 + ln

(
1

I
φbβ

))
< 0.

Since I ≥ 1, this is in turn satisfied if

−β +
2
√

I

(I + 1)

σε

ση

φb (1 + ln (φbβ)) < 0.

Since
√

I
(I+1)

is decreasing in I, a sufficient condition is

β

φb (1 + ln (φbβ))
>

σε

ση

, (54)

i.e. (38).
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The alternative sufficient condition is obtained without studying second-order conditions.
First, observe that plugging bi = ∞ into the objective function yields a value of −∞, so the
global maximum is either bi = 0 or involves bi satisfying the first-order condition (52). Defining

A =
1

I
+

I − 1

I2
φbβ,

B =
φbβ

I
,

C =
φbβ

I2
− 1

I
= B − A,

K =
2√

I (I + 1)

σε

ση
φ2

b ,

the first-order condition (52) can be rewritten:

B

A + bi
− 1 +

K

A + bi
ln

(
A + bi

B

)
= 0

C − bi + K ln

(
1 +

bi − C

B

)
= 0. (55)

As considered above, bi = C is a solution to the first-order condition. If bi 6= C, then the
first-order condition can be rewritten as

−1 +
K

bi − C
ln

(
1 +

bi − C

B

)
= 0. (56)

Note that the function ln(1+x)/x is decreasing in x, and so −1+ K
bi−C

ln
(
1 + bi−C

B

)
is decreasing

in bi. If −1 − K
C

ln
(
1 − C

B

)
< 0, then (56) has no solution. Then bi = C is the unique solution

for (55). Also note that −1 − K
C

ln
(
1 − C

B

)
< 0 implies that ∂f(bi)

∂bi
|bi=0 > 0, and so bi = 0

cannot be the global maximum. Hence, if −1 − K
C

ln
(
1 − C

B

)
< 0, the global maximum must

be bi = C. This sufficient condition implies −C < K ln
(
1 − C

B

)
, which eventually yields:

1 >
2
√

I

(I + 1)

σε

ση

φb

β
ln

(
1 − 1

I
+

1

φbβ

)
1

1
φbβ

− 1
I

(57)

Since ln(1+x)
x

is decreasing in x, the function

ln

(
1 − 1

I
+

1

φbβ

)
1

1
φbβ

− 1
I

is decreasing in I. Also note that the function

2
√

I

(I + 1)

σε

ση

φb

β

is decreasing in I for I ≥ 1. Thus

2
√

I

(I + 1)

σε

ση

φb

β
ln

(
1 − 1

I
+

1

φbβ

)
1

1
φbβ

− 1
I
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is decreasing in I for I ≥ 1. Hence a sufficient condition for (57) to hold is that

1 >
σε

ση

φb

β
ln

(
1

φbβ

)
1

1
φbβ

− 1

σε

ση

<
φbβ − 1

φ2
b ln (φbβ)

. (58)

Note that sufficient condition (54) or (58) may be weaker, depending on parameter values,
so we provide them both in the Proposition.

Proof of Proposition 13. Suppose the conjectured equilibrium actions are b̂i such that∑
i b̂i 6= φbβ/I − 1. Can bi = b̂i be an optimal response of blockholder i?

We first analyze the case
∑

i b̂i > 0. In this case, there exists i such that b̂i > 0. Blockholder
i’s objective function (37) becomes

max
bi

(
β

I

)
φb log

(
1 + bi +

∑

j 6=i

b̂j

)
− bi

+
1√

I (I + 1)

σε

ση

E



(

φa log (1 + a) + φb log

(
1 + bi +

∑

j 6=i

b̂j

)
+ η − µ

)2

 (59)

with

µ = φa ln (1 + a) + φb ln

(
1 +

∑

i

b̂i

)
.

The first-order condition is

0 =


 φbβ

I
(
1 + bi +

∑
j 6=i b̂j

) − 1




+
2√

I (I + 1)

σε

ση

(
φa log (1 + a) + φb log

(
1 + bi +

∑

j 6=i

b̂j

)
− µ

)
φb

1 + bi +
∑

j 6=i b̂j

(60)

When bi = b̂i, the second term on the right-hand side of (60) is equal to zero. However,
the first term on the right-hand side of (60) is different from zero since

∑
i b̂i 6= φbβ/I − 1.

The first-order condition cannot be satisfied and thus we cannot have
∑

i b̂i 6= φbβ/I − 1 and∑
i b̂i > 0 at the same time.

The only other possible symmetric equilibrium in pure strategies involves
∑

i b̂i = 0, which

implies b̂i = 0 for all i. For this to be an equilibrium, we would need the right-hand side of
(60) to be negative at bi = b̂i = 0. Since we have Ibi = φbβ

I
− 1 > 0, we have φbβ > I and so

this cannot be the case.

Sufficient Conditions for a > 0 and bi > 0. From (7), we have

a = φaα

(
I

I + 1

)
− 1.

41



Since I ≥ 1, I
I+1

≥ 1
2

and so a sufficient condition for a ≥ 0 is

φaα ≥ 2.

The sufficient conditions for bi ≥ 0 depend on the variant of the model we are considering.
We start with the analysis of the firm value optimum in the core model, Proposition 4, which
yielded I∗ = φa−φb

φb
. From (9), we have

bi = φbβ

(
1

I

)2

− 1

I
,

and so bi = 0 at I = φbβ. Thus, φa−φb

φb
< φbβ is sufficient to guarantee that bi > 0 at

I = φa−φb

φb
. However, in the presence of non-negativity constraints, firm value (16) is no longer

a concave function of I and so an additional condition is necessary to guarantee that I = φa−φb

φb

is a global, rather than only local, optimum. While increasing I above φa−φb

φb
initially reduces

firm value (because the detrimental effect on intervention outweighs the beneficial effect on
trading), once I hits φbβ, intervention is already at its minimum level of zero. Thus, further
increases in I have no negative effect on intervention, but continue to improve trading, and
thus unambiguously boost firm value. The global optimum may be either I = φa−φb

φb
or I = ∞.

For I = φa−φb

φb
, we have

E [v] = φa log

(
φaα

I

I + 1

)
+ φb log

(
φbβ

1

I

)

= (φa − φb) log (φa − φb) + φa log α + φb log
(
φ2

bβ
)
,

and for I = ∞, we have
E [v] = φa log (φaα) .

Thus,
(φa − φb) log (φa − φb) + φb log

(
φ2

bβ
)

> φa log φa

is sufficient to guarantee that I∗ = φa−φb

φb
in the presence of non-negativity constraints.

Similar analysis yields sufficient conditions for the analysis of the social optimum, Propo-
sition 5, as

I∗
soc < φbβ,

φa log

[
φaα

(
I∗
soc

I∗
soc + 1

)]
+ φb log

[
φbβ

(
1

I∗
soc

)]
− φaα

(
I∗
soc

I∗
soc + 1

)
− φbβ

1

I∗
soc

> φa log (φaα) − φaα,

where I∗
soc is defined by (18). The sufficient conditions for the analysis of the private optimum,

Proposition 6, are

I∗
priv < φbβ,

β

{
φa log

[
φaα

(
I∗
priv

I∗
priv + 1

)]
+ φb log

[
φbβ

1

I∗
priv

]}
− φbβ

1

I∗
priv

+

√
I∗
priv

I∗
priv + 1

σησε > βφa log (φaα) ,
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where I∗
priv is defined by (20). The sufficient conditions for the model with the general objective

function, Proposition 11, are

I∗
gen < φbβ

φa ln

[
φaα

[
1 − ω

I∗
gen + 1

]]
+ φb ln

[
φbβ

[
ζ

I∗
gen + 1

+
1 − ζ

I∗
gen

]]
> φa ln (φaα) ,

where I∗
gen is defined by (36). The sufficient conditions for the model with imperfect signals,

Proposition 17, are

(φa − φb)(2σ
2
δ + σ2

η)

φbσ2
η

> φbβ

(φa − φb) log (φa − φb) + φb log

[
φb

2βσ2
η

(2σ2
δ + σ2

η)

]
> φa log φa.

For the analysis of perfect positive complementarities (Proposition 9), it is automatic that
the optimum cannot involve a non-negativity constraint binding, since firm value is zero if a
or
∑

ibi is zero. For perfect negative complementarities (Proposition 10), we do allow for a or∑
ibi to be zero, and indeed the optimum involves one of these terms being zero.

B Imperfect Signals

The key mechanism through which we achieve the optimality of a multiple blockholder structure
is the positive effect of blockholder numbers on price informativeness. It is therefore important
to verify the robustness of this result to other specifications of the information structure. In
the core model, blockholders have perfect information about firm value ṽ; Appendix C shows
that the results hold with imperfect signals when blockholders receive the same signal. Here,
we consider the case in which blockholders observe imperfect and uncorrelated signals.

Each blockholder observes a signal ν̃i = ṽ + δ̃i where δ̃i, i ∈ I are independent and δ̃i ∼
N (0, σ2

δ ). Propositions 14-17 are the analogs of Propositions 1-4 in the core model.

Proposition 14. (Trading Equilibrium) The unique linear equilibrium of the trading stage
is symmetric and has the form:

xi(ν̃i) = γ (ν̃i − φa log (1 + a) − φb log (1 +
∑

ibi)) ∀i (61)

p(ỹ) = φa log (1 + a) + φb log (1 +
∑

ibi) + λỹ, (62)

where

λ =

√
I(σ2

δ + σ2
η)σ

2
η

σε((I + 1)σ2
η + 2σ2

δ )
(63)

γ =
σε√

I(σ2
δ + σ2

η)
, (64)

and a and bi are the market maker’s and blockholders’ conjectures regarding the actions.
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Proposition 15. (Price Informativeness) Price informativeness is equal to

Iσ2
η

(I + 1)σ2
η + 2σ2

δ

.

Proposition 16. (Optimal Actions) The manager’s optimal action is

a = φaα

(
Iσ2

η

(I + 1)σ2
η + 2σ2

δ

)
− 1 (65)

and the optimal action of each blockholder is

bi = φbβ

(
1

I

)2

− 1

I
. (66)

Proposition 17. (Firm Value Optimum) The optimal number I∗ of blockholders maxi-
mizes:

E[ṽ] = φa log

[
φaα

(
Iσ2

η

(I + 1)σ2
η + 2σ2

δ

)]
+ φb log

[
φbβ

(
1

I

)]
. (67)

Solving the maximization problem, we obtain:

I∗ =
(φa − φb)(2σ

2
δ + σ2

η)

φbσ2
η

. (68)

The number of blockholders has exactly the same effects as in the core model. An increase
in I raises price informativeness (Proposition 15) and thus managerial effort (Proposition
16), but reduces blockholder effort. Therefore, I∗ remains increasing in φa and decreasing in
φb (Proposition 17). An additional result in the case of imperfect signals is that I∗ is also
increasing in the noise in the blockholders’ signals σ2

δ and decreasing in the variance of firm
value σ2

η . Proposition 15 shows that, if σ2
η is high, price informativeness is already high under

a single blockholder, and so there is less scope to increase it further through augmenting I.
The opposite intuition applies to the effect of σδ.

The model can also be extended to multiple trading rounds and long-lived private infor-
mation. Since these extensions have been undertaken in the microstructure literature (albeit
without linking price informativeness to manager actions), we can use these prior studies to
establish the robustness of our results. Holden and Subrahmanyam (1992) and Foster and
Viswanathan (1993) consider the effect of competition among identically informed investors
with long-lived private information. As in our model, they find that price discovery is acceler-
ated when compared to Kyle’s monopolistic case. Foster and Viswanathan (1996) extend the
analysis to the case of heterogeneously informed investors and show that the degree of compe-
tition depends on the correlation structure of investors’ signals. In particular, competition is
more intense when the correlation between initial signals is high.

Back, Cao, and Willard (2000) extend the Kyle model to continuous time and a general
correlation structure of investors’ signals. They show that price informativeness is again higher
under multiple informed traders for some fixed initial period, after which the relationship
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reverses. This fixed initial period is typically a very long time, and only ends close to the
public announcement date. Thus, price informativeness is higher under multiple informed
traders for all but the very end of the trading period. It is the initial period that is relevant for
our setting: the microfoundations for the manager’s stock price concerns discussed in Section
4.3 show that the stock price the manager cares about is a long time before the date when
fundamental value is publicly released. For example, the manager can be fired (for a low stock
price), headhunted (for a high stock price), sell his own shares or raise equity within a few
months. By contrast, the recent corporate scandals and financial crisis highlight that it may
take several years for fundamental value to become known.

As discussed in more detail in Section 5, empirical evidence also supports the robustness
of our model. In the real world, blockholders have heterogenous signals and there are multiple
trading periods. Boehmer and Kelley (2009) and Gallagher, Gardner and Swan (2010) find
that competition among blockholders increases price efficiency.

C Precision of Information Varies with I

In the core model, all blockholders observe the value of the firm perfectly. We now allow
for blockholders to receive the same noisy signal, the precision of which is increasing in each
blockholder’s stake (β/I) and thus decreasing in the number of blockholders I. Blockholders
now observe a signal ν̃ = ṽ + δ̃ where δ̃ ∼ N (0, σ2

δ (I)). We show that the results of the core
model are unchanged as long as signal precision does not decline too rapidly with I.24

Proposition 18. (Trading Equilibrium) The unique linear equilibrium of the trading stage
is symmetric and has the form:

xi(ν̃) = γ (ν̃ − φa log (1 + a) − φb log (1 +
∑

ibi)) ∀i (69)

p(ỹ) = φa log (1 + a) + φb log (1 +
∑

ibi) + λỹ, (70)

where

λ =

√
I

I + 1

σ2
η

σε(
√

σ2
η + σδ(I)2)

(71)

γ =
1√
I

σε√
σ2

η + σδ(I)2
, (72)

and a and bi are the market maker’s and blockholders’ conjectures regarding the actions.

Proof If the market maker uses a linear pricing rule of the form p(y) = µ + λy, blockholder i
maximizes:

E[(ṽ − µ − λy)xi | ν̃ = ν] =

(
σ2

η

σ2
η + σδ(I)2

ν − µ − λ
∑

j 6=i

xj

)
xi − λx2

i .

24Appendix B considers noisy and uncorrelated signals. Here, blockholders receive the same signal. This
represents the toughest case for our model, since it means that the amount of information in the economy
declines as I rises – there is a single signal which becomes less precise.
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This maximization problem yields

xi(ν) =
1

λ

[
σ2

η

σ2
η + σδ(I)2

ν − µ − λ
∑

j

xj(ν)

]
∀i.

The strategies of the blockholders are symmetric and we thus have

xi(ν) =
σ2

η

(I + 1)λ(σ2
η + σδ(I)2)

(ν − µ) ∀i.

Total order flow is thus given by

y =
I

(I + 1) λ

σ2
η

σ2
η + σδ(I)2

(v − µ) + ε. (73)

The market maker takes the blockholders’ strategies as given and sets

p(y) = E[ṽ|y]. (74)

Using the normality of ṽ and ỹ yields

λ =

√
I

I + 1

σ2
η

σε(
√

σ2
η + σδ(I)2)

µ = φa log (1 + a) + φb log (1 +
∑

ibi) .

From this we obtain:

xi(ν) =
σε√
I

1√
σ2

η + σδ(I)2
(ν − φa log (1 + a) − φb (1 +

∑
ibi)) ∀i,

p(y) = φa log (1 + a) + φb (1 +
∑

ibi) +

√
I

I + 1

σ2
η

σε(
√

σ2
η + σδ(I)2)

y,

as required.
The next proposition calculates price informativeness.

Proposition 19. (Price Informativeness) Price informativeness is equal to

I

I + 1

σ2
η

σ2
η + σδ(I)2

Proof The result follows from p (y) = µ + λy and equation (73).
It is easy to see that if σδ(I) does not increase too quickly, then price informativeness is

increasing in I. As in the core model, when I increases, blockholders trade more competitively
and impound more information into prices. This outweighs the fact that there is less infor-
mation in the economy and each blockholder has less precise information. Also as in the core
model, liquidity σε has no effect on price informativeness.

We now solve for the actions of the manager and the blockholders in the first stage.
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Proposition 20. (Optimal Actions) The manager’s optimal action is

a = φaα

(
I

I + 1

σ2
η

σ2
η + σδ(I)2

)
− 1 (75)

and the optimal action of each blockholder is

bi = φbβ

(
1

I

)2

− 1

I
. (76)

Proof The manager maximizes the market value of his shares, less the cost of effort:

E [αp̃ − a] . (77)

When setting the price p̃, the market maker uses his conjecture for the manager’s action a.
Therefore, the manager’s actual action affects the price only through its influence on ṽ, and
thus blockholders’ order flow. The manager’s first-order condition is given by:

α

(
E

[
dp̃

dṽ

])(
φa

1 + a

)
− 1 = 0. (78)

From Proposition 19, we obtain (75). The action of each blockholder is the same as in the
paper.

If σδ(I) does not increase too quickly, the number of blockholders has a positive impact
on managerial effort a. The mechanism is the same as in the core model. An increase in the
number of blockholders makes prices more informative, increasing the reward to the manager
for exerting effort. As in the core model, increasing the number of blockholders always has a
negative impact on blockholders effort bi.

The optimal number I of blockholders maximizes:

E[ṽ] = φa log

[
φaα

(
I

I + 1

σ2
η

σ2
η + σδ(I)2

)]
+ φb log

[
φbβ

(
1

I

)]
. (79)

It is easy to see that the optimal number of blockholders is strictly higher than 1 if σδ(I)
does not increase too quickly. The intuition is similar to the core model. On one hand, an
increase in I exacerbates the free-rider problem and hinders intervention. On the other hand,
an increase in I can raise price informativeness and thus managerial effort. In this extension,
there is an additional negative effect of raising I, which is that each blockholder becomes less
informed. The optimal number of blockholders is thus lower than in the core model.

D Measures of Price Informativeness

This section proves that our measure or price informativeness, E
[

dp̃
dṽ

]
, is equivalent to the

measure commonly used in the microstructure literature, (Var(ṽ) − Var(ṽ|p̃)) / Var(ṽ).
Using the formula for the conditional variance of a bivariate normal distribution

Var(ṽ|p̃) = (1 − Corr(ṽ, p̃)2) Var(ṽ),
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we have
(Var(ṽ) − Var(ṽ|p̃)) / Var(ṽ) = Corr(ṽ, p̃)2. (80)

Since, in equilibrium, the price is a linear function of ṽ and ε̃,

E

[
dp̃

dṽ

]
=

Cov(ṽ, p̃)

Var(ṽ)
.

From the law of iterated expectations and (42),

Var(p̃) = Cov(ṽ, p̃).

Therefore,

Corr(ṽ, p̃)2 = E

[
dp̃

dṽ

]
. (81)

Combining (80) and (81) shows that

E

[
dp̃

dṽ

]
= (Var(ṽ) − Var(ṽ|p̃)) / Var(ṽ).
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